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Abstract

English

This (cumulative) dissertation is concerned with mechanisms and models of information
processing and transmission by individual neurons and small neural assemblies. In this
document, I first provide historical context for these ideas and highlight similarities and
differences to related concepts from machine learning and neuromorphic engineering. With
this background, I then discuss the four main themes of my work, namely dendritic filtering
and delays, homeostatic plasticity and adaptation, rate-coding with spiking neurons, and
spike-timing based alternatives to rate-coding. The content of this discussion is in large
part derived from several of my own publications included in appendix C, but it has been
extended and revised to provide a more accessible and broad explanation of the main ideas,
as well as to show their inherent connections. I conclude that fundamental differences remain
between our understanding of information processing and transmission in machine learning
on the one hand and theoretical neuroscience on the other, which should provide a strong
incentive for further interdisciplinary work on the domain boundaries between neuroscience,
machine learning and neuromorphic engineering.

Deutsch

Diese (kumulative) Dissertation behandelt Mechanismen und Modelle der Informationsver-
arbeitung und -übertragung durch einzelne Neuronen sowie kleine neuronale Assemblies.
In diesem Dokument stelle ich erst den historischen Kontext dieser Ideen dar, und zeige
Gemeinsamkeiten und Unterschiede zu verwandten Ansätzen beim maschinellen Lernen
und Neuromorphic Engineering auf. Vor diesem Hintergrund entwickele ich im Anschluss
die vier Kernthemen meiner Arbeit: dendritische Filterung und Delays, homeostatische Plas-
tizität und Adaption, Ratencodierung durch gepulste Neuronen, sowie spike-timing-basierte
Alternativen zur Ratencodierung. Der Inhalt dieser Darstellung basiert im Wesentlichen
auf mehreren eigenen Publikationen, welche im Appendix C angehängt sind, er wurde
allerdings weiterentwickelt und ergänzt um die Kernideen einfacher zugänglich zu machen,
umfassender zu erklären und ihre inhaltlichen Verbindungen herauszustellen. Ich schließe
die Diskussion mit der Schlussfolgerung ab, dass nach wie vor fundamentale Unterschiede
in unserem Verständnis von Informationsverarbeitung und -übertragung bei maschinellem
Lernen auf der einen, und theoretischen Neurowissenschaften auf der anderen Seite bestehen,
die einen starken Anreiz für weitere interdisziplinäre Arbeiten im Grenzbereich zwischen
Neurowissenschaften, maschinellem Lernen und Neuromorphic Engineering bieten sollten.





Preface

What this thesis is about

In this dissertation, I talk about several aspects of neural information processing that I
believe to be very important for biological systems, but which are often overlooked or
under-appreciated in models of (artificial) neurons. The topics of this thesis are therefore
situated between the fields of theoretical neuroscience, machine learning and neuromorphic
hardware. In order to explain the similarities and differences between these fields, the first
two chapters offer a brief historical perspective of how they came to be (chapter 1), and
how each of them understands and uses (artificial) neurons and networks today (chapter 2).
Chapter 3 gives a brief tour of the field of neuromorphic hardware — my application domain
for concepts from theoretical neuroscience. In each of the subsequent chapters, I then address
one important aspect of neural computation, i.e. computing with dendritic filters and delays
in chapter 4, improving computation with homeostatic plasticity in chapter 5, rate-coding
with spiking neurons in chapter 6, and finally spike-timing and event-based computation in
chapter 7.

What this thesis is not about

It is impossible for me to give a full account of all the topics related to neural information
processing in one thesis, and even for the topics that I want to discuss, there is a large host
of prior work that is better summarized elsewhere. For those who are interested in a deeper
discussion of these topics as well as the historical context, I can highly recommend the books
by Rosenblatt [1], Ashby [2], Maass and Bishop [3], Turing and Copeland [4], Eliasmith and
Anderson [5], Laughlin [6], and Stone [7].

During my time in the Neuroinformatics lab, I also worked on other topics in machine
learning and statistical modeling that I have decided to not incorporate into this thesis, since
they are thematically disconnected. These include:

• Joint work with Olivera Stojanovic and the Robert-Koch-Institute on a Bayesian spatio-
temporal model of the spread of infectious diseases [8]. I have attached the text of this
publication on pages 236ff, but I will not address its content here.

• Joint workwith Kristoffer Appel, among others, on the creation of the TRAUMSCHREIBER,
a low-power mobile EOG/ECG/EMG/EEG device for polysomnography [9], as well as a
software-stack to go with it and a block-course on wearable electronics.
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• Joint work with Pascal Nieters, the German Meteorological Service and others on a model
to predict precipitation using deep learning [10].

• The contents of a lecture series on Ensemble methods for machine learning, developed and
held with Olivera Stojanovic in the summer term of 2017.

• The supervision of 16 Bachelor’s and 7 Master’s theses and several student projects on
various topics.

What are the main scientific contributions within this thesis?

Most of the chapters in this thesis summarize ideas that are explored in depth in some
corresponding publication(s), which I have attached as pages 99 and following. These contri-
butions are the following three journal papers¹, two peer-reviewed conference papers, one 1 The first two are published in peer-

reviewed journals, the third has only
been published as a pre-print and sub-
mitted for review.

book chapter, one patent², one non-peer-reviewed article and one conference poster, each of

2 The patent has been filed and is cur-
rently pending.

which is introduced in more detail in the corresponding chapter(s):

1. P. Nieters, J. Leugering, and G. Pipa, “Neuromorphic computation in multi-delay coupled
models,” IBM Journal of Research and Development, vol. 61, no. 2/3, 8:7–8:9, 1, 2017, issn:
0018-8646, 0018-8646. doi: 10.1147/JRD.2017.2664698.

2. J. Leugering and G. Pipa, “A Unifying Framework of Synaptic and Intrinsic Plasticity
in Neural Populations,” Neural Computation, vol. 30, no. 4, pp. 945–986, 17, 2018, issn:
0899-7667. doi: 10.1162/neco_a_01057.

3. J. Leugering, P. Nieters, and G. Pipa, “Event-based pattern detection in active dendrites,”
bioRxiv, p. 690 792, 17, 2020. doi: 10.1101/690792.

4. F. Meyer zu Driehausen, R. Busche, J. Leugering, and G. Pipa, “Bistable Perception in
Conceptor Networks,” in Artificial Neural Networks and Machine Learning – ICANN 2019:
Workshop and Special Sessions, 2019, isbn: 978-3-030-30493-5. doi: 10.1007/978-3-03
0-30493-5_3.

5. J. Leugering, “Making spiking neurons more succinct with multi-compartment models,”
in Proceedings of the Neuro-Inspired Computational Elements Workshop, 17, 2020, isbn:
978-1-4503-7718-8. doi: 10.1145/3381755.3381763.

6. J. Leugering, P. Nieters, and G. Pipa, “Computational Elements of Circuits,” in The
Neocortex, W. Singer, T. J. Sejnowski, and P. Rakic, eds., red. by J. Lupp, vol. 27, The MIT
Press, 2019, pp. 195–209, isbn: 978-0-262-04324-3.

7. J. Leugering, P. Nieters, and G. Pipa, “Neuromorpher Musterdetektor und neuromorphe
Schaltkreisanordnung hiermit,” pat. pending.

8. J. Leugering, “A visit to the neuromorphic zoo,” in Embedded World Conference 2020 –
Proceedings, 2020, isbn: 978-3-645-50186-6.

9. P. Nieters, J. Leugering, and G. Pipa, “Neuromorphic Adaptive Filters for event detection,
trained with a gradient free online learning rule,” presented at the Machine Learning
Summer School (MLSS-Africa 2019), 1, 2019.

But some content is also new, or at least not covered by my own publications. In particular,
chapters 4 and 6 contain work that motivated me to pursue the ideas of chapter 7, but
ultimately did not directly appear in any of my publications yet. I have therefore decided to
include some of this additional content in appendices A and B, respectively, in the hope that
it will help to keep the rest of the text concise.

http://dx.doi.org/10.1147/JRD.2017.2664698
http://dx.doi.org/10.1162/neco_a_01057
http://dx.doi.org/10.1101/690792
http://dx.doi.org/10.1007/978-3-030-30493-5_3
http://dx.doi.org/10.1007/978-3-030-30493-5_3
http://dx.doi.org/10.1145/3381755.3381763
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The main body of this thesis is intended to provide a more accessible summary of these
publications, to highlight the links between various topics, and to embed them into the
bigger picture that has motivated my work. Since I have compiled this thesis over a long
time-span, some of my views have also evolved, and I chose to introduce some of these older
ideas in a new, hopefully clearer way. In some places, this has revealed some new interesting
connections that were not explored in the original work.

Who should read this thesis?

Naturally, I hope the PhD committee will like this text, but I’m writing this with a different
audience in mind, as well. Over the last few years, I have recognized more and more under-
appreciated similarities between theoretical neuroscience on the one hand, and engineering
fields like electronics, signal processing and communication systems on the other — both in
terms of what questions are asked (“How much information can be transmitted over this
kind of channel? Is a pulse-based code effective? How can I realize this computation with
these components?”), and in terms of the tools and models used to answer these questions
(information theory, signal processing, dynamical systems, control theory, etc.). Similarly, I
think that a lot of the early results of cybernetics and connectionism are often overlooked
today; but reading papers and books by Minsky and Papert, Ashby, Turing, von Neumann,
Rosenblatt and others shows how many of the seemingly revolutionary ideas of the last
few years are already implied there! In particular at the fringes where these different fields
meet, namely neuromorphic hardware, the close connection and shared history between
theoretical neuroscience, computer science, machine learning and engineering becomes
obvious. It is therefore not a coincidence that some of the most inspiring books I have read
during my time as a PhD student are actually rooted in engineering disciplines. I have tried
to follow their example, giving this text a bit of an engineering flavor.

Hopefully, the high-level descriptions given here make these results more accessible than
the original publications (which were rather specifically written for other neuroscientists)
and thus also prove useful for scientists and engineers from different fields, e.g. neuromorphic
hardware designers or machine learning researchers, who are interested in abstract models
of neural information processing mechanisms.

Johannes Leugering
Nürnberg,
2020

Ancillary material is available in this code repository:
https://github.com/jleugeri/phd

https://github.com/jleugeri/phd
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It was the best of times, it was the worst of times,
it was the age of wisdom, it was the age of foolishness,
it was the epoch of belief, it was the epoch of incredulity,
it was the season of Light, it was the season of Darkness

— A Tale of Two Cities by Charles Dickens

The issues that give rise to excitement today seem much the same as those that were
responsible for previous rounds of excitement. The issues that were then obscure remain
obscure today because no one yet knows how to tell which of the present discoveries are
fundamental and which are superficial.

— Perceptrons — Expanded Edition by Marvin Minsky and Seymour Papert

1 The computer and the brain

When photons hit the retina and cause a neuron to emit a spike, a physical effect becomes
information. How is this information represented and processed by the neural network that
constitutes the brain? How does it extract structure from its sensory inputs, and learn to
adapt to its environment?

These are fundamental questions that have kept generations of scientists and philosophers
busy. To answer them, we’ll need to thoroughly understand the basic mechanisms at play
in neural information processing. The objective of theoretical neuroscience is therefore to
identify these principles, from the level of individual neurons and synapses all the way up to
networks and brain areas, and to abstract them into theoretical (i.e. mathematical) models,
which can be understood without all the overwhelming complexity that has developed over
hundreds of millions of years of evolutionary history.

The sudden and rapid development of Deep Learning in the last couple of years might
have given many people the impression that we have now finally “cracked the code” of how
neural networks work, and that we are on the verge of solving the mystery of the brain and
(artificial) intelligence. While this is certainly an exciting perspective, it’s important not to
forget, that similar claims have been made multiple times before, and the celebration has
always turned out to be premature. For example, consider the following brutal assessment
by Marvin Minsky and Seymour Papert from the year 1988 and mentally substitute the older
term “Connectionism” with its modern counterpart “Deep Learning”:

[…] [L]ittle of significance had changed since 1969, when the book was first published[…]. One
reason why progress has been so slow in this field is that researchers unfamiliar with its history
have continued to make many of the same mistakes that others have made before them. Some
readers may be shocked to hear it said that little of significance has happened in this field. Have
not perceptron-like networks — under the new name connectionism — become a major subject
of discussion at gatherings of psychologists and computer scientists? Has not there been a
“connectionist revolution?” Certainly yes, in that there is a great deal of interest and discussion.
Possibly yes, in the sense that discoveries have been made that may, in time, turn out to be
of fundamental importance. But certainly no, in that there has been little clear-cut change in
the conceptual basis of the field. The issues that give rise to excitement today seem much the
same as those that were responsible for previous rounds of excitement. The issues that were
then obscure remain obscure today because no one yet knows how to tell which of the present
discoveries are fundamental and which are superficial. Our position remains what it was when
we wrote the book: We believe this realm of work to be immensely important and rich, but we
expect its growth to require a degree of critical analysis that its more romantic advocates have
always been reluctant to pursue — perhaps because the spirit of connectionism seems itself to
go somewhat against the grain of analytic rigor. [20]
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So what has changed since then? Are we about to make the same mistakes again? To
get a better understanding of where we stand today, I’d like to start with a bit of historical
background of the field(s).

1.1 The origins of computational (neuro-)science and machine learning

The medical study of the central nervous system can be traced back for more than three
millennia [21], but the mechanism by which it operates has remained a mystery throughout
most of this history. It was only after a series of remarkable scientific discoveries in the
19th century, notably the observation of so-called “animal electricity” [22], advances in
microscopy and histology [23], the theory of evolution [24] and the popularization of cell
theory [25] that the neuron doctrine took root [26] and modern scientific theories of the
brain’s function began to emerge. In 1943, in the middle of World War II, Warren McCulloch
and Walter Pitts wrote a landmark paper A Logical Calculus of Ideas Immanent in Nervous
Activity [27], in which they first proposed that networks of interconnected nerve cells could
implement a powerful symbolic logic calculus. A sufficiently large network of neurons,
endowed with the necessary periphery and memory, could therefore satisfy the conditions of
a universal machine as outlined just seven years prior by Alan Turing [28]. They write [27]:

It is easily shown: first, that every net, if furnished with a tape, scanners connected to afferents,
and suitable efferents to perform the necessary motor-operations, can compute only such
numbers as can a Turing machine; second, that each of the latter numbers can be computed
by such a net; and that nets with circles can be computed by such a net; and that nets with
circles can compute, without scanners and a tape, some of the numbers the machine can, but
no others, and not all of them. This is of interest as affording a psychological justification of
the Turing definition of computability and its equivalents, Church’s A-definability and Kleene’s
primitive recursiveness: if any number can be computed by an organism, it is computable by
these definitions, and conversely.

This connection between the biological connectivity of neurons and an abstract, mathe-
matical notion of computation created a theoretical foundation for the field of computational
neuroscience. But the concept of computability did not merely provide a language for neu-
roscientists to describe the operation of the brain — it also made it conceivable to simulate
neural behavior, and therefore intelligent behavior, on any appropriate universal machine.
Turing became fascinated by this idea and in 1948 wrote a visionary publication entitled
Intelligent Machinery [29] that today reads like a prescient outline for many subsequent
developments in machine learning.¹ 1 In it, he discussed, for example, not

just recurrently connected neural net-
works, but also proposed randomly
initialized networks, which are then
trained through reward and punish-
ment, as a reasonable analogy for
(some parts of) cortex — a view that
anticipated some recently resurfaced
ideas in the field of reservoir comput-
ing [30]. His B-Type networks further-
more bear some resemblance to gated
recurrent units (GRUs) [31] which
have been popularized recently by the
LSTM model [32].

In 1949, Donald Hebb provided the first mechanistically plausible theory of (unsupervised)
learning in neural networks, the now famous Hebbian learning rule, which in its most explicit
form stated that “[w]hen one cell repeatedly assists in firing another, the axon of the first cell
develops synaptic knobs (or enlarges them if they already exist) in contact with the soma of
the second cell.” [33] Thus the study of synaptic plasticity and learning in neural networks
was born. Ross Ashby extended this view of self-organization as an essential property of the
brain (and life in general), and ultimately proposed in his highly influential 1954 book Design
for a Brain [2] the “Homeostat”, a self-regulating machine, as an example of artificial life.

But since these algorithmic mechanisms could also be simulated by a Turing machine,
it now seemed conceivable to simulate intelligent behavior, and, even more interestingly,
learning. As Turing himself suggested in private correspondence to Ross Ashby, hisAutomatic
Computing Engine (ACE) could be used to that end:
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It would be quite possible for the machine to try out variations of behavior and accept or reject
them in the manner you describe and I have been hoping to make the machine do this. […]
Thus, although the brain may in fact operate by changing its neuron circuits by the growth
of axons and dendrites, we could nevertheless make a model, within the ACE, in which this
possibility was allowed for, but in which the actual construction of the ACE did not alter, but
only the remembered data, describing the mode of behavior applicable at any time. I feel that
you would be well advised to take advantage of this principle, and do your experiments on the
ACE, instead of building a special machine. I should be very glad to help you over this. [4]

In his later publications and talks, Turing pursued the idea of intelligent and learning
machines (or rather software programs?) further, and in his 1950 essay Computing Machinery
and Intelligence [4] presented the Imitation Game, today known as the Turing Test, which was
meant to illustrate how sufficiently powerful computing machines could be considered to be
as intelligent (or more so) than their human counterpart. He was quite outspoken about this
conviction:

The original question, “Can machines think?” I believe to be too meaningless to deserve discus-
sion. Nevertheless, I believe that at the end of the century the use of words and general educated
opinion will have altered so much that one will be able to speak of machines thinking without
expecting to be contradicted. I believe further that no useful purpose is served by concealing
these beliefs.

These ideas set in motion the development of ever more powerful computer architectures,
which in turn enabled generations of increasingly complex artificial neural network models
and learning methods. This progress continues well into the present era of deep learning,
which owes part of its success to the highly parallelized computing architectures that have
emerged in recent decades. But it’s worth keeping inmind that this transition from serial “von-
Neumann” to parallel “non-von-Neumann” computer architectures is less of a revolutionary
new idea than it is a return to the roots of computer science and neuromorphic hardware. In
fact, John von Neumann himself had both studied models of biological systems and developed
artificial computers like the ENIAC [34], and therefore understood the respective strengths
and weaknesses of both approaches. But in a time when computers were still excessively
large, expensive and memory a limited resource, he concluded in his tragically incomplete
lecture notes The Computer and the Brain [35], from which I have stolen the title of this
chapter:

That is, large and efficient natural automata are likely to be highly parallel, while large and
efficient artificial automata will tend to be less so, and rather to be serial. […] More specifically,
not everything serial can be immediately paralleled — certain operations can only be performed
after certain others, and not simultaneously with them (i.e. they must use the results of the latter).
In such a case, the transition from a serial scheme to a parallel one may be impossible, or it may
be possible but only concurrently with a change in the logical approach and organization of the
procedure. Conversely, the desire to serialize a parallel procedure may impose new requirements
on the automaton. Specifically, it will almost always create new memory requirements, since
the results of the operations that are performed first must be stored while the operations that
come after these are performed. Hence, the logical approach and structure in natural automata
may be expected to differ widely from those in artificial automata.

Half a century later and with new materials and manufacturing processes at hand, neu-
romorphic hardware might finally be able to bridge this gap between natural and artificial
automata.
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1.2 From Perceptrons to Deep Neural Networks

The theoretical study of artificial neural networks as (simulated) learningmachines continued,
first under the label of cybernetics, then connectionism, into the modern field of deep learning.
First, Frank Rosenblatt’s original Perceptron [1] demonstrated that even a simple feed-
forward network model, composed of one layer of (random) feature detectors followed by a
single McCulloch-Pitts neuron, could solve many perceptual problems. Minsky and Papert
[20] thoroughly analyzed the capabilities and limitations of this and similar kinds of network
with their corresponding learning rules mathematically, and provided sound arguments why
these networks were still impractical for many relevant problems. Despite the fact that they
explicitly limited this critique to perceptrons with a single trainable layer ², this may have 2 Their critique also went well beyond

the often mentioned inability of indi-
vidual threshold-linear functions to
solve the XOR problem, and included
questions of learning speed, complex-
ity of the required networks and even
the information content required for
specifying all coefficients. Despite sig-
nificant advances in the field, all of
these questions are still relevant to-
day.

had an adverse impact on the amount of research and funding dedicated to the study of
perceptrons at the time — a period that is sometimes referred to, a bit melodramatically, as
the first AI winter.

Over the course of a few years, multi-layer perceptrons [36] gradually became more
powerful and offered a first flavor of the abstract artificial neural networks (ANNs) still in
use today: a hierarchy of (affine) linear combinations of inputs followed by non-linear trans-
formations (in this case a step-function) with coefficients that could all be chosen or learned.
Kunihiko Fukushima’s Cognitron [37] made use of a deep hierarchy of neural network layers
to solve a complex computer-vision problem, and could therefore be considered one of the
first deep neural networks — although its weights were not optimized through end-to-end
supervised learning, but partly derived from expert models, partly trained through a compet-
itive form of unsupervized learning. A later extension, the neocognitron [38], even introduced
shift-invariant features and could be considered an early form of convolutional neural network
[39]. A series of proofs, e.g. in [40], finally extended the analysis of the computational power
of perceptrons by Minsky and Papert to multi-layered networks and showed that different
kinds of feed-forward neural networks are capable of uniformly approximating arbitrary
real-valued functions. These proofs of universal function approximation capabilities didn’t
require particularly deep neural networks — a single hidden layer suffices in principle, so
many practitioners questioned whether stacking many layers of neurons into deep neural
networks would serve any practical “computational” purpose at all. In a curious repetition
of history, Minsky and Papert reaffirmed their skepticism of neural networks in a practically
unchanged revision of their influential Perceptron book [20], and to similar effect. They
wrote:

The perceptron has shown itself worthy of study despite (and even because of!) its severe
limitations. It has many features to attract attention: its linearity; its intriguing learning theorem;
its clear paradigmatic simplicity as a kind of parallel computation. There is no reason to suppose
that any of these virtues carry over to the many-layered version. Nevertheless, we consider
it to be an important research problem to elucidate (or reject) our intuitive judgment that the
extension is sterile. Perhaps some powerful convergence theorem will be discovered, or some
profound reason for the failure to produce an interesting “learning theorem” for the multilayered
machine will be found.

And in some sense their words became a self-fulfilling prophecy, with many researchers
opting for the simpler to train and to use shallow network architectures (which had stiff
competition from more sophisticated machine learning methods). The following “second
AI winter” spelled the end of this connectionist era, even though the ‘interesting “learning
theorem” ’, as Minsky and Papert had asked for, already existed unbeknownst to many in
the form of the backpropagation algorithm, which was repeatedly re-discovered over the
preceding and the following decades [41].
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In parallel to these studies of feed-forward networks, recurrent neural network (RNN)
models were developed, to endow networks with some form of memory and/or allow them
to process temporally varying information. Jeffrey Elman introduced context units, i.e. hidden
neurons that receive the network’s previous outputs as additional inputs, into an otherwise
feed-forward network, thus retaining previous activity in a form of “active” working memory
[42]. John Hopfield took inspiration from Ising models [43], which were being developed
in statistical physics to model the dynamics of the spins of electromagnetically coupled
atoms, and provided an alternative account of memory, where each “memory” is associated
with a stable fixed-point of a recurrently connected network’s dynamics. These two novel
perspectives on memory, a form of volatile memory realized by the networks momentary
state and a persistent memory encoded in the network’s connectivity, inextricably linked
the concepts of memory and computation. In Elman’s words:

In this account, memory is neither passive nor a separate subsystem. One cannot properly speak
of a memory for sequences; that memory is inextricably bound up with the rest of the processing
mechanism. [42]

1.3 The “Deep Learning Revolution”

After a phase of relative tranquility, (feed-forward) neural networks entered the spotlight for
a third time after several convolutional neural network architectures [44–46] won several
computer vision challenges, most famously the network nicknamed AlexNet by Krizhevsky,
Sutskever, and Hinton, which severely out-performed the competing machine learning
methods and thus proved the impressive capabilities of deep neural networks to a wider
audience. The real reason for the breakthrough success of deep learning has since been
debated intensely. But besides scientific reasons, which we shall look at in chapter 2, the
success of deep learning can be attributed at least in part to the availability of “big data”,
i.e. large, unstructured datasets, which are ideally suited as training material for (deep)
neural networks with their large number of parameters. Another factor is certainly the
rapid improvement of computer hardware, graphic cards and dedicated accelerators, and
a corresponding surge in optimized software tools for simulating large networks such as
TensorFlow [47] and PyTorch [48], which enabled many researchers to develop and test
countless variations of network architectures.

But the most compelling explanation, in my opinion, is neither better data, software or
hardware, nor better performance of deep networks per se. Instead, deep learning owes
much of its success to the surprising³ efficiency of the gradient-based optimization of neural 3 We will see in chapter 2 why this is

surprising.networks. This only works because deep neural networks, despite being complex nonlinear
models, can be easily differentiated with respect to all their parameters and optimized using
stochastic gradient descent, also called (error-)backpropagation in Deep Learning [39]. The
same optimization tools can also be applied to train recurrent networks in discrete time,
by a procedure called backpropagation through time [49]. If a task can be expressed by a
differentiable loss function, as it is often the case in machine learning problems, we can
therefore use variations of the greedy (stochastic) gradient descent algorithm to iteratively
reduce the loss. This offers a very simple interface towards applications, because it only
requires specifying the goal of a task in terms of a differentiable loss function and providing
some data — little domain knowledge required! So, deep learning really is all about learning,
albeit in the narrow context of optimization, rather than biology or psychology.
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1.4 The state of the field(s) today

Of course, how neural networks “learn” has been a critical question not just in machine
learning, but also for theoretical/computational neuroscience. However, neuroscientific
models of learning naturally have to work within the confines set by biologically plausible
mechanisms, and are thus primarily concerned with questions about how unsupervised
(possibly modulated by other factors) local plasticity mechanisms might interact, what kind
of top-down error signals may be provided by the nervous system, or how they might be
propagated. Machine learning, on the other hand, does not have to play by the same rules,
and instead application-driven questions of reliability, speed, performance and efficient usage
of limited labelled training data take center stage there.

Today, half a century after the conception of the multi-layer perceptron, deep neural
networks are the dominant method throughout many application areas of machine learning,
where they have displaced other approaches such as kernel methods and decision trees from
the leaderboards of most competitions.

However, just as machine learning has advanced over the last decades, so has neuroscience,
and the early models, such as the logic calculus proposed by McCulloch and Pitts, from which
artificial neural networks were derived, no longer reflect our best current understanding of
biological neural networks. Since the first full, mechanistic, dynamic model of a biological
neuron by Hodgkin and Huxley [50], major technological and methodical improvements
in experimental neuroscience have revealed more and more about the complex biological
mechanisms at play, and our theoretical models of neurons and networks have changed
accordingly. Chapters 4 to 7 are about some of these developments.

To make a long story short, what once started as a single research question — how neurons
process information — has since split into three distinct areas of research: the study of how
abstract (deep) artificial neural networks can be used to implement intelligent or learning
machines, which today are major subfields of artificial intelligence and machine learning, the
study of how biological neurons process information, which we now refer to as computational
neuroscience, and the study of how similar artificial systems could be realized efficiently in
hardware, now called neuromorphic hardware.
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Connectionists use learning rules in big networks of simple components — loosely
inspired by nerves in a brain. Connectionists take pride in not understanding how a
network solves a problem. [...] If you just have a single problem to solve, then fine, go
ahead and use a neural network. But if you want to do science and understand how
to choose architectures, or how to go to a new problem, you have to understand what
different architectures can and cannot do.

— Marvin Minsky

2 Information processing in artificial neural networks

When we talk about information processing by biological neurons and networks, the best
place to start is probably the highly simplified, biologically inspired model of artificial neural
networks. But as we already saw in chapter 1, the development of these models for machine
learning purposes has since become a science of its own, and has produced models that satisfy
the constraints of computer hardware very well, but differ from their biological inspiration
in substantial ways. These differences are what I want to explore throughout the rest of this
thesis.

2.1 Terminology

Throughout this thesis, I will rely on a lot of terminology and basic concepts from theoretical
neuroscience and machine learning. If you are already familiar with these, feel free to skip
ahead to section 2.2; otherwise the following section offers a brief and high-level summary.
For a more in-depth or rigorous definition, any current review or book concerned with
neural networks should do, e.g. Goodfellow, Bengio, and Courville [39], Schmidhuber [41],
and Strang [51]. In abstract terms, an artificial neural network (ANN) is a graph of nodes and
directed, weighted edges. The nodes represent neurons, the edges represent synaptic connections
between neurons. Each synapse connects its pre-synaptic neuron to its post-synaptic neuron.
In turn, the synapse is one of its pre-synaptic neuron’s outgoing, and one of its post-synaptic
neuron’s incoming connections. Each edge can be assigned a synaptic weight or efficacy,
which either represents the gain that the synapse applies to its signal or the probability with
which an individual spike (also called never impulse or action potential) is transmitted by the
synapse. These weights of a network can be collected in a so-called weight matrix, also called
the connectome of the network. In a machine learning context, neurons are typically grouped
into an ordered list of 𝑘 > 0 layers of neurons with typically no connections within each
layer.¹ For the most common kind in machine learning, feed-forward networks, the graph is

1 The corresponding graph is 𝑘-partite,
and the synaptic weights of such a
network form a block-matrix.

acyclic², meaning that its directed synapses define a partial ordering of the neurons from

2 The weight matrix of such a network
is (block) triangular without diagonal
entries.

the input all the way “forward” to output neurons (hence the name). If the graph describing
the network is cyclic, it is referred to as a recurrent network.³ Biological neural networks

3 Sometimes, a bit inconsistently, also
groups of neurons with mutual con-
nections that are embedded in an oth-
erwise feed-forward structure are re-
ferred to as recurrent layers of a feed-
forward network. The correspond-
ing synaptic weights would then
form a block-triangular matrix with
super-diagonal entries in the diagonal
blocks.

can also be stratified into layers, but here the definition is based on the neurons’ cell-bodies’
locations, rather than their connectivity, and hence cannot be used interchangeably.

Some neurons or layers (for feed-forward networks typically the first layer(s) in the
hierarchy) receive external input signals and are called the input neurons or layers, whereas
the neurons or layer(s) whose states are taken as the output of the network (for feed-forward
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networks typically found higher up in the hierarchy) are called the output neurons or layer(s).
Neurons or layers that are neither input nor output are called hidden. Following a rather
vague heuristic, a network is typically called a deep neural network if it is composed of
particularly many layers and its weights are inferred from data — but exceptions to this
rule exist, e.g. the Long-Short-Term-Memory [32] architecture is commonly counted among
the deep neural network architectures despite it being a recurrent network. Conversely,
networks with only very few hidden layers are sometimes called shallow. Since the concept
of depth is not applicable at all in cyclic graphs, the distinction between deep, shallow and
other networks, is therefore blurry in practice and often determined by the historical context.

The graph structure defines the topology of the network, and together with a choice of
neuron and synapse models determines the network architecture. The precise behavior of the
network depends on the values of its parameters such as synaptic weights, gain or bias terms.

Artificial neural networks are often used to approximate functions that are only partially
specified by some training dataset of input-output pairs. The act of optimizing the network
parameters for this task is then referred to as training. Using a trained neural network to
map (previously unseen) inputs onto corresponding outputs is referred to as inference.

When simulating neural networks, time can be represented in different ways. For feed-
forward networks in a Machine Learning context, time is typically quantized into discrete
update steps, where the information is assumed to propagate through the entire network
from the input layer to the output layer within one time-step. For recurrent networks in
discrete time, one time-step resembles one simultaneous update to each neuron’s output,
and the time-varying outputs of the network are represented by real-valued sequences. In
a computational neuroscience context, especially for analog and spiking networks, time is
often represented continuously. The signals emitted by the neurons are then modeled as
real-valued functions, stochastic processes, or spike trains. While it is in principle possible to
mix these different kinds of signals within one network, most architectures assume signals
to be either all continuous, discrete, or spiking.

2.2 Artificial neural networks are function approximators

For machine learning applications, the utility of neural networks derives solely from their
remarkable ability to approximate highly non-linear functions. For example, if a neural
network is used to distinguish images of cats from images of dogs, it is implicitly assumed
that the network is in principle capable, once the correct parameters are chosen, to solve
the problem — at least to a sufficiently good degree of approximation. In other words, we
expect the network, a complex mathematical model with lots of parameters, to be able
to approximate some (unknown) function that maps from the space of photographs to the
discrete set {cat, dog}. This may seem trivial now, but proving that this holds for the kind of
networks we use today turned out to be a quite challenging task. It has long been known
that networks of simple McCulloch-Pitts neurons with a step-function as nonlinearity can
represent any boolean function [27], but showing that this concept can be generalized to
arbitrary continuous functions for neurons with other nonlinearities such as the rectified
linear or the hyperbolic tangent function is anything but trivial. Cybenko [40] finally provided
the very general proofs, that any continuous function on the n-dimensional unit cube or
any indicator function of a finite measurable subset on the n-dimensional unit cube can be
uniformly approximated by an expression of the form

𝑦(𝑥) = 𝑊 𝑜𝑢𝑡𝑓 (𝑊 𝑖𝑛𝑥 + 𝑏),

with parameters 𝑊 𝑜𝑢𝑡, 𝑊 𝑖𝑛 and 𝑏 if 𝑓 is continuous and discriminatory ⁴ (e.g. any sigmoid

4 A function is defined to be discrim-
inatory if its integral w.r.t. a non-
negative measure is zero only if the
measure is identically zero. The most
popular choice of activation function
in deep learning, the rectified lin-
ear activation functions of the form
𝑅𝑒𝐿𝑈 (𝑥) = max(𝑥, 0) for example is
not discriminatory, since it is constant
on the negative half-plain.
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function would do). Hornik [52] showed that the same in fact holds true for any arbitrary
function that is continuous, bounded and non-constant. ⁵ A more recent insight about the 5 This proof still does not directly

cover the ReLU function, which is not
bounded, but since a linear combina-
tion of two ReLUs can be used to con-
struct a bounded function that satis-
fied the requirements, this indirectly
proves the same power for ReLU func-
tions as well [51].

approximation capabilities of deep neural networks comes from the study of splines: a
feed-forward network with rectified-linear activation functions — a very popular choice in
machine learning — provides a parameter-efficient way to construct a continuous, piece-wise
linear (CPWL) function or spline [53–55].

In simple terms this means, that both regression problems (i.e. approximating a continuous
function) and classification problems (i.e. approximating an indicator function over some
subset) can be solved arbitrarily well by a neural network with one or more hidden layers, if
there are enough neurons in the hidden layers.

The addition of recurrent connections allows these models to retain information for
extended periods of time in the network’s state, endowing the system with a form of memory.
This was observed by Elman [42], who argued that by including context units, which feed
back the system’s current output as an additional input, the network can “memorize” and
distinguish sequences of input. This idea has been generalized by Funahashi and Nakamura
[56], proving that in fact any continuous function of time 𝐹(𝑡), including of course the state of
an autonomous dynamical system, can be uniformly approximated arbitrary well on a (finite)
time-interval by some recurrent neural network with sufficiently many hidden neurons. The
argument was further extended by Chow and Li [57] to non-autonomous, i.e. input-driven,
systems under few generous additional conditions.

The function/system approximation paradigm therefore also covers recurrent artificial
neural networks. Similar arguments can be made for both feed-forward and recurrent spiking
neural networks (see chapter 6), which are universal computers as well, given sufficiently
many neurons [58].

To summarize the summary, these existence proofs show that feed-forward and recurrent
artificial neural networks, spiking or not, can in principle (i.e. if they are sufficiently large,
which depends on the task at hand) approximate both instantaneous functions of the input
and input-driven dynamical systems arbitrarily well. This makes artificial neural networks
extremely powerful tools for machine learning and, as we shall see, neuromorphic hardware.

2.3 A bird’s eye view of artificial neural networks

The existence proofs above only promise that neural networks are in principle capable of
approximating functions, but give no indications of how such networks can be constructed.
A large part of neural network research since the Connectionists’ era has therefore been
concerned with finding different architectures that are good at solving different tasks, as
well as smart, systematic ways to combine them. As Minsky and Papert [20] already wrote:

Different kinds of networks lend themselves best to different kinds of representations and to
different sorts of generalizations. […] This is why we maintain that the scientific future of
connectionism is tied not to the search for some single, universal scheme to solve all problems
at once but to the evolution of a many-faceted technology of “brain design” that encompasses
good technical theories about the analysis of learning procedures, of useful architectures, and of
organizational principles to use when assembling those components into larger systems.

Today, there are at least four major conceptual frameworks that provide tools for con-
structing useful, large neural networks. We’ll have a look at each of them in the following,
and see why neither of them is suitable for studying information processing on the lower
level of individual biological neurons that I am interested in.
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2.3.1 Deep Learning

Currently, the most popular framework by far for constructing large artificial neural networks
is deep learning. As the name implies, it typically involves stacking many layers of neurons
into deep hierarchies, and training the entire network through gradient-based optimization
methods.
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Figure 2.1. A feed-forward net-
work with input, hidden, and output
layer(s). Information flows only from
input towards output layers.

Despite its apparent success, this approach was (and still is) met with some skepticism:
Why would stacking more than one hidden layer have any qualitative benefit for the net-
work’s computational power, if the proofs above show that a single hidden layer is apparently
enough? Also, given their typically rather large number of parameters, the numerics of opti-
mizing these networks alone are a serious challenge that requires capable linear algebra tools
[47]. And more fundamentally, according to basic results from statistical learning theory
[59], these networks should either require an infeasibly large amount of training data and/or
strong regularization of the parameters, ⁶ or generalize poorly to new data. This is apparent 6 There are a lot of explicit and heuris-

tic options for regularization in deep
learning, such as Nesterov optimizers,
dropout, weight decay, data augmen-
tation and early stopping [39].

from the large amount of information content that the network weights store, as already
pointed out by Minsky and Papert [20]⁷. Another concern from the perspective of nonlinear

7 For example, the MegatronLM GPT2
model with its 345 million parameters
comes at a compressed size of about
650MB [60], its bigger cousin with 8.3
billion parameters [61] is correspond-
ingly larger.

optimization of such large models should be local minimal of the loss function — i.e. mediocre
solutions of the problem, which are difficult to improve for greedy gradient based methods
and would require more sophisticated optimization methods.

Nevertheless, the training of large deep neural networks with gradient methods appears
to stubbornly defy these intuitions, and has been surprisingly effective in practice. One
argument in favor of building such deeper hierarchies is, that this “compositionality” allows
for a much more efficient approximation of high-dimensional functions by comparatively
few neurons. For the example of networks with rectified-linear activation functions, which
correspond to piece-wise linear splines as we already saw above, the number of neurons
required to approximate a given function can in some cases be exponentially reduced as we
increase the number of layers in the network!⁸ Another argument is based on the surprising 8 To be precise: there are functions 𝑓

for every integer 𝑘 such that a deep
network with 𝑘3 neurons distributed
over 𝑘2 layers can approximate 𝑓 at
least as well as any shallower network
with ≤ 𝑘 layers and 1

2 𝑘
𝑘+1 −1 or more

neurons! [54].

observation that the higher number of parameters in deep neural networks appears to
make the optimization easier ! Even deep neural networks that have parameters in excess
of training data samples, make no explicit use of regularization, and perfectly interpolate
all the training data have been shown to generalize well to previously unseen data [62].
This point has been debated a lot, but the answer might come from two rather unexpected
directions: First, in the high dimensional parameter-space of neural networks, local minima
of the loss function are comparatively less common in relation to e.g. saddle points, which
pose much less of a problem for gradient methods [63]. Second, it appears that the commonly
used stochastic gradient descent algorithm itself has an implicit regularizing effect on the
learned coefficients, and leads the network coefficients towards a minimum norm solution
[62, 64, 65]. A different, albeit controversial, explanation of the same phenomenon can be
made in terms of the information bottleneck principle [66], which we’ll return to in a different
context in chapter 5. The lottery ticket hypothesis [67] goes one step further and suggests,
that much smaller sub-networks (the winning tickets) that perform equally well can typically
be extracted from deep neural networks by eliminating most of the synapses, neurons or
even layers. Sometimes, the learned weights of entire layers within a deep neural network
can be completely irrelevant for the task, as can be demonstrated by randomizing them with
only negligible impact on performance [68]. However, finding such a sparser or shallower
structure directly, e.g. by optimizing a smaller neural network to begin with, fails in practice.
This, the argument goes, is because the parameter-rich deep neural networks offer a large
search space, or a scaffold of sorts, in which the much smaller networks (which are sufficient
to solve the task) can be constructed efficiently using gradient based optimization methods.
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Therefore, gradient descent and deep learning are so intimately coupled, that one of the
most prominent figures in the field, Yann LeCun, even advocated for altogether switching to
the more accurate name “differentiable programming” instead of “deep learning”, since the
optimization of neural networks by gradient-based methods is the defining feature, rather
than the depth of the networks, as the term “deep learning” would imply [69].

An increasingly important practical consideration of deep learning research today is also
the search of parameter efficient network architectures for different domains, i.e. by trying
to reduce the number of neurons or synapses [70, 71], efficiently reusing synaptic weights
[72] or even lowering the precision of weights [73, 74]. Over time, deep neural network
architectures have thus evolved, much like their biological counterparts, and in the process
incorporated a lot of domain-specific optimizations and inductive biases that make them
well suited to specific tasks, but also pose a risk as they are typically not well understood
(see also the note below).

Note: Nature or nurture in deep learning?

One important question in neuroscience is, how much of behavior is genetically
predetermined (i.e. by nature), and how much is learned (i.e. by nurture). A very
similar question could in fact be asked for deep learning! On first sight, it may seem
obvious that all network coefficients are learned from data, and the amount of domain
expertise explicitly build into the network is also minimal compared to early work by
Connectionists, hence learning should play the major part. However, this is not true
if we look at the discipline of deep learning as a whole: Deep neural networks are
typically evaluated and compared to each other by training and testing them on the
same benchmark tasks with the same datasets. Naturally, the more effective solutions
are more likely to be picked up and developed further. What is kept and modified from
one implementation to the next is typically not the weights (although pre-trained
networks exist), but the network architecture — i.e. the types and numbers of layers,
activation functions, etc. But, if we now evaluate the next generation of networks
on the same dataset(s), we have committed a cardinal sin of statistical modeling by
peeking at the test dataset (i.e. starting from an architecture, a meta-parameter of the
model, selected on the same test dataset) before training the model! We could avoid
this by testing each model on entirely new testing data, but even in that case merely
choosing the best-performing model as a starting-point effectively bakes domain
“knowledge” (or rather, information) into the network architecture. The result of this
dynamic, which happens not on the level of the individual researcher but across the
entire field, could be viewed as an evolutionary algorithm that produces ever more
powerful, complex and specialized network architectures for these benchmarks. This
is partially deliberate, since we want to find better and more useful models, partially
unwittingly, since we might underestimate how much of bias this can introduce. A
funny and slightly worrying example of this are the weight agnostic neural networks
by Gaier and Ha [75], which show that some network architectures are so specifically
designed for a certain task that they can solve it reasonably well even if all of their
coefficients are fully randomized — reducing the role of learning in deep learning ad
absurdum!

In a nutshell, the deep learning framework uses large, mostly feed-forward artificial
neural networks with weights optimized by gradient descent to approximate functions that
minimize some differentiable measure of “loss” or “cost”. Its surprising effectiveness is at least
in part due to the quantitative improvements that this optimization approach can offer, such
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as the reduction of local minima and implicit regularization, but this can come at the expense
of over-complete networks, where many neurons or synapses may be entirely redundant.
The choice of network architectures plays an important part, as well, but is often based
on heuristics and incremental improvements of prior work. Despite interesting attempts
to address the issue [76, 77], this “black-box” character of deep neural networks remains a
contentious topic of debate [78] to date.

2.3.2 Attractor Networks
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Figure 2.2. A recurrent network with
input, hidden, and output neurons. In-
formation is actively maintained in
the network by recurrent activity.

Attractor networks offer a completely different explanation of information processing by
artificial neural networks. As we have seen above, recurrent neural networks can, if large
enough, implement arbitrary dynamical systems. The computation realized by a neural
network could therefore also be attributed to the long-term dynamics of the network as
a whole, such as convergence of the network’s state to some fixed-point, rather than the
instantaneous output of a network in response to input. This insight underlies the model
proposed by Hopfield [43]. He studied the linearized dynamics of recurrently connected
neural networks and showed, that under certain constraints on the connectivity between
neurons (e.g. symmetric and bounded connection weights), the network state must —without
external input— converge to one of possibly many stable equilibria, depending on the
network’s initial state. Starting from a perturbed state that is similar but not identical to
one of these stable attractors brings the network activity towards the attractor, and thereby
“restores” the unperturbed stable state. By converging to a fixed-point, the network thus
retrieves and reconstructs a perfect “memory” from an incomplete or corrupted version
of that memory — a form of memory that he called content addressable memory. Rather
than a function, the network thus implements an iterative algorithm! Since each memory
is implemented by a fixed-point of the network dynamics, it imposes a constraint on the
weight matrix of the network, and the total number of memories that can be stored this ways
(and the robustness with which each memory can be recovered) depends on the size of the
network. While Hopfield networks themselves are barely used in machine learning, they
have been very influential in theoretical neuroscience. Similar ideas can be found today also
in reservoir computing approaches.

2.3.3 Reservoir Computing and Conceptors
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Figure 2.3. A reservoir computer with
input and hidden neurons and a linear
readout layer. Information is actively
maintained in the network by recur-
rent activity and accessed through the
readout layer.

Reservoir computing (also known as echo state networks or liquid state machines) [30] repre-
sents a more radical approach to using recurrent network dynamics. It uses the transient
dynamics of randomly connected recurrent neural networks, which are continuously driven
by the network’s inputs. The time-varying state of the networks’ neurons thus provides
a random, non-linear embedding of the network’s input history into a high-dimensional
vector space. For this embedding to be useful, it only needs to satisfy a few basic and easy to
satisfy conditions [58]. The recurrent network is then called a reservoir computer, and a linear
transformation of the network’s high-dimensional state vector can be used to approximate
a time-varying target signal, i.e. some function of the network’s recent input history. This
transformation is also called the network’s linear readout, and its coefficients are the only
parameters of the reservoir computer that are optimized for a specific task. ⁹ The conceptor 9 This combination of a random

high-dimensional, non-linear feature-
expansion with a simple linear regres-
sionmodel is reminiscent of the kernel
trick popularized by support vector
machines [79] and the original Per-
ceptron [1].

framework [80] combines this approach with ideas from attractor networks. By controlling
the attractors and limit-cycle dynamics of the reservoir (like a Hopfield network), a conceptor
network can shape the dynamics to produce or resonate with certain stable time-varying
patterns of activity, which a linear readout (like in a reservoir computer) can shape into a
desired time-varying output signal. For an example of a network architecture built from
such conceptor networks, see contribution 1.
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Contribution 1: Bistable Perception in Conceptor Networks

This conference paper explores, how a hierarchy of conceptor networks, which can
act as generative models for time-series signals, can be used to actively suppress
noise and minimize prediction errors. The idea of such a hierarchical predictive
coding scheme is in line with biological observations and provides an appealing
model of perception. When presented with ambiguous superposition of two stimuli,
this architecture reproduces the well known psychological phenomenon of bi-stable
perception, where either of the two pure stimuli is perceived in isolation for a period
of time, before the percept switches to the other. It matches empirical results with
surprising fidelity, including the distribution of the time-spans for which either of
the stimuli is perceived! This paper extends ideas developed within Felix Meyer
zu Driehausen’s thesis, which I had the pleasure of supervising. Felix and Rüdiger
Busche subsequently turned it into a viable model and a nice conference paper, for
which they deserve all the credit.

Reference (see also appendix C, page 100ff for the full text):

F. Meyer zu Driehausen, R. Busche, J. Leugering, and G. Pipa, “Bistable Perception
in Conceptor Networks,” in Artificial Neural Networks and Machine Learning – ICANN
2019: Workshop and Special Sessions, 2019, isbn: 978-3-030-30493-5. doi: 10.1007
/978-3-030-30493-5_3.

2.3.4 The Neural Engineering Framework

The Neural Engineering Framework (NEF) incorporates ideas from both deep learning and
reservoir computing, but it offers a rather different perspective on how to construct large
neural networks. A great in-depth discussion of this approach can be found in [5]. It focuses
on the design of modular neural network architectures from smaller building blocks with well-
defined function, rather than end-to-end optimization of network coefficients from data. Each
of these building blocks is itself a randomly connected feed-forward network or reservoir
computer, whose activation encodes (or represents) some variable, typically low-dimensional.
Connections between the blocks are optimized to implement functions (or transformations)
of these variables. By stacking and connecting many such modules together, large and
complex networks with well-defined behavior can thus be constructed. This approach is very
general and works well for different kinds of neuron models, from the simple linear-nonlinear
neurons to more complex dynamic neuron models like leaky integrate-and-fire neurons,
because it doesn’t rely on the backpropagation of gradient information through deeply nested
hierarchies of neural network layers. Figure 2.4 illustrates this modular approach.

Figure 2.4. A network constructed out
of mutually connected feed-forward
and reservoir modules according to
the neural engineering framework.

A practical limitation of this approach is that it requires the problem to be analytically
decomposed into sub-problems that are each simple enough to be efficiently solved by a
single module, and we need either an analytical solution of each of these sub-problems or
sufficient data to train them. But when this is possible, the neural engineering framework
provides a straight-forward way to compose smaller feed-forward and recurrent neural
networks into very large networks with well-understood, highly complex functionality.¹⁰

10 The Nengo software tool [81] offers
a very fast and entertaining way to
construct neural networks using the
NEF.

http://dx.doi.org/10.1007/978-3-030-30493-5_3
http://dx.doi.org/10.1007/978-3-030-30493-5_3
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2.4 Where artificial and biological neural networks diverge

We now looked at four popular frameworks for constructing large artificial neural networks,
each of which offers a different interpretation of ‘neural information processing’. But do
these machine learning frameworks explain information processing in the brain? I believe
not, because despite their shared history, terminology and many conceptual connections,
the artificial neurons and networks shown above are extreme simplifications, idealizations
and modifications of their biological inspirations. To name just of a few of the fundamental
differences that have emerged between the artificial neural networks models form machine
learning and those from theoretical neuroscience:

1. Artificial neural network models employ a single kind of neuron and a single kind of
synapse, the behavior of which is fully parameterized by a single bias andweight coefficient
each. In the brain, however, neurons are morphologically and behaviorally so diverse that
even a classification into distinct classes can be challenging. But with around 60 different
types of neurons in the retina alone, the number of different classes of neurons in the
human brain may well be in the hundreds [82] — not to even speak of other cell types
like glia cells, which are entirely absent from artificial neural network models. Similarly
for synapses, whose inhibitory and excitatory effects are not adequately expressed by
positive and negative synaptic weights alone [83]. Also, electrical gap junctions, which
directly and bi-directionally couple neurons and play an important role in some biological
neural networks [84], are not modeled at all in artificial neural networks. In addition to
these neural structures, the vast variety of neurotransmitters or -modulators is ignored in
artificial neural networks, despite their critical influence on behavior in biology [85].

2. A lot of biological structures are genetically pre-determined, rather than learned in an
end-to-end fashion as is popular in machine learning. For instance, in simple multicellular
organisms such as C. elegans [86] or tadpole larvae [87], neurons are assembled in very
specific, genetically determined patterns; so specific in fact, that the entire connectomes
can be described on the level of individual neurons. Neurons can also form specificmotives
[88] of mutual connectivity patterns, that are reproduced many times throughout the
nervous system, or larger homogenous groups of strongly coupled neurons called cell
assemblies [89], or even larger structures called canonical microcircuits, possibly arranged
in a columnar structure called cortical (micro-)columns — but this latter point remains
a contentious topic [90]. These innate, highly specific structures don’t fit any of our
machine learning paradigms above, yet they “compute” nonetheless.
This is particularly relevant if one considers the fact that neurons and networks must
have evolved from such and even simpler structures. Studies of the evolutionary origins
of neurons and nervous systems point to simple sensory cells arranged in homogenous
nerve nets [91] that made use of available electrical or chemical messaging processes
[92] to broadcast sensory stimuli or motor commands across the animal’s body. None of
these mechanisms seem to fit the frameworks discussed above — or even the function
approximation paradigm in general!

3. Conversely, many biological neural networks also rely heavily on local synaptic, intrinsic
and structural plasticity, and thus continuously adjust to changing circumstances (see
chapter 5). The weights, biases and nonlinearities of deep networks, on the other hand,
are typically assumed to remain fixed after initial training.

4. The transmission of signals also incurs delays, which are ignored in most artificial net-
work models, yet they have significant and unavoidable implications on the behavior, in
particular for real-time or recurrently connected neural networks (see chapter 4).
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5. The neuron and synapse models in artificial neural networks are also typically modeled
as memory-less functions, that instantaneously map an input onto an output. Biological
neurons, on the other hand, integrate information in time (see chapter 4), adapt (see
chapter 5) and can have a rather complex internal state and memory (see chapter 7).

6. For the majority of neurons in the brain, the output is not communicated as a real-valued
signal, but via distinct spike events, which requires a fundamentally different mathematical
framework (see sec. 6 and chapter 7) of event-based detection of spike patterns, rather
than rate-based function approximation.

7. The complex morphology of biological neurons and their dendritic arbors is typically
ignored in favor of point-neuron models — despite ample evidence of the relevance of
that morphology for behavior (see chapter 7).

Given the remarkable complexity of biological neurons, it seems like a fool’s errand to
attempt to give a single model of neural computation on the same level of abstraction as
current artificial neural networks and to then expect that it applies to “the brain” in general
— let alone across different species. In the following chapters, I will therefore only attempt
to describe a few of these points in some more detail. For a deep dive into the intricacies of
many of these neural mechanisms, I’d refer to Singer, Sejnowski, and Rakic [93], which also
contains contribution 2, or Laughlin [6] for a more “bottom-up” perspective.

Contribution 2: Computational Elements of Circuits

The book “The Neocortex”, published by the Ernst Strüngmann Forum, compiles the
current state of knowledge about the basic principles of operation of the neocortex.
In our contribution to this work, the book chapter entitled “Computational Elements
of Circuits”, we discuss several fundamental properties of neural computation — from
homeostasis to delayed interactions, synchronization, random feature expansion and
reservoir computing. Within this book chapter, my own largest contribution can
be found in the section “Information Processing in Single Neurons and Populations”,
which elaborates and generalizes ideas from contribution 6.

Reference (see also appendix C, page 111ff for the full text):

J. Leugering, P. Nieters, and G. Pipa, “Computational Elements of Circuits,” in The
Neocortex, W. Singer, T. J. Sejnowski, and P. Rakic, eds., red. by J. Lupp, vol. 27, The
MIT Press, 2019, pp. 195–209, isbn: 978-0-262-04324-3.
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What I cannot create, I do not understand.

— Richard Feynman

In particular, this requirement [of a physical implementation] will help to prevent the
solution from being a mere verbalistic ‘explanation’, for in the background will be the
demand that we build a machine to do these things.

— W. Ross Ashby, Design for a Brain

3 Neuromorphic computing— a bridge between
engineering and neuroscience

As we have seen in chapters 1 and 2, machine learning can produce very large artificial
neural networks that require correspondingly large data sets and a lot of power to train.
Since the available compute resources are a major bottleneck for the deployment of deep
neural networks in many real-world applications, the numerical efficiency of artificial neural
networks has become a major concern of deep learning research. This optimization of neural
network models for the available hardware has certainly produced impressive results, but it
also limits the scope of research to just those kinds of models that can be efficiently simulated
on current hardware. Due to this compromise, modern deep learning on the one hand makes
use of tools and algorithms that are not available to biological neurons, and on the other
hand it cannot use many of the interesting biological mechanisms studied in theoretical
neuroscience.

The field of neuromorphic hardware approaches this issue from the other side: If a neural
mechanism seems promising for improving computation, but it lacks efficient hardware-
support, then we should develop custom hardware rather than compromise our models! The
design constraints of neuromorphic hardware are therefore determined only by what can be
efficiently realized by analog and digital (or even ionic and photonic) circuits. A large range of
biological mechanism that are difficult to integrate into a classical machine learning setting,
such as spiking neural networks, are thus commonly used in the neuromorphic computing
community. At the same time, the design constraints imposed by the hardware development
raise other important questions that can help to challenge and improve theoretical models.
As we shall see, many of the constraints faced by engineers are in fact quite similar to the
limitations that biological neurons have to overcome. Hence, I believe that neuromorphic
hardware can build a bridge between the two disciplines by providing engineers with
biological inspirations, and neuroscientists with tools and measures to evaluate their models.

3.1 The neuromorphic zoo

In the wake of the impressive success of deep learning and the foreseeable end of Moore’s
Law, the research of new, alternative computing architectures and technologies on which
to efficiently execute these neural network models attracts considerable interest from both
academia and industry [95]. This has led to a revival of research on neuromorphic hardware,
which promises to convert the theoretical insights from neuroscience into tangible benefits
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Contribution 3: A Visit to the Neuromorphic Zoo

In this paper, which accompanies a public talk held at the EmbeddedWorld conference,
I provide a brief overview over current concepts and academic as well as commercial
developments in the field of AI-hardware acceleration in general, and neuromorphic
hardware in particular. This paper was selected by WEKA Fachmedien for a re-
publication in the magazine DESIGN&ELEKTRONIK, where it appeared in German
translation under the title “Neuromorphe Hardware”. Since the Embedded World
conference accompanies an industry fair, the proceedings are targeted towards an
engineering audience and are intended to offer an accessible high-level perspective.
(This papers passed an editorial process, but no scientific peer-review.)

Reference (see also appendix C, page 128ff for the full text):

J. Leugering, “A visit to the neuromorphic zoo,” in Embedded World Conference 2020
– Proceedings, 2020, isbn: 978-3-645-50186-6.

A German translation of this article appeared also in:

J. Leugering, “Neuromorphe Hardware,” DESIGN&ELEKTRONIK, no. 7/2020, pp. 41–
47, 2020.

for the development of biologically inspired, highly efficient computing hardware. While
this idea is not entirely new¹, there are several good reasons for the renewed interest: 1 In fact, neuromorphic hardware is

as old as neural networks, since they
both pre-date the emergence of pow-
erful general purpose computers. An
early example is the Perceptron Mark
1, a physical implementation of the
perceptron model by Rosenblatt [1].

The first is economical: The stunning success of neural networks in recent years has
revealed many new potential application areas for neural networks, from sensor and image
processing and voice control all the way to autonomous robots and vehicles. Since many
of these applications are “at the edge” [96], i.e. they do not have direct access to high
performance computing infrastructure, they require on-board hardware capable of executing
specific neural network architectures. Neuromorphic hardware can address this new and
growing market.

Second, technological breakthroughs in the development of new materials such as various
memristive devices [97], carbon nanotubes, in-silicon photonics, spintronics and much more
[98], as well as improved procedures of lithography provide new freedom to implement
neuromorphic architectures efficiently in hardware.

Third, there are promising new theoretical concepts in the field of neural networks as
well as in electronics design. For example, an increasing emphasis is placed on non-volatile
memory that can persist even when power is switched off. This is often paired with (analog)
in-memory computing [99], which brings simple processing elements such as logic gates
directly together with storage elements. That is great news for neuromorphic hardware,
which can leverage this for an efficient implementation of synaptic connections [100, 101].
Similarly, a lot of theoretical models like spiking neural networks, that play only a minor
role in conventional machine learning, are being actively explored in the neuromorphic
computing domain [102].

All of these factors combined explain the current resurgence of neuromorphic hardware
as one leg of the so-called next generation computing (NGC, the other leg being quantum
computing). Recently, a large variety of hardware implementations, using analog, digital,
mixed signal and even photonic circuits have been developed, and the research of neuro-
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morphic computing has since developed into an independent discipline in academia and
industry alike. For a brief review of the current state of the neuromorphic hardware field,
see contribution 3.

3.2 A signal processing view of neuron models

In chapter 2 we saw how machine learning frameworks build large networks from individ-
ual neurons. Each neuron in that context is really just a function of the form 𝑥𝑗(𝑡 + 1) =
𝑓𝑗(∑𝑖 𝑤𝑗,𝑖𝑥𝑖(𝑡) + 𝑏𝑗), which becomes a seamless part of the larger function that describes the
network as a whole. It makes little sense to ask, how much energy this neuron consumes,
how much memory it has, or what it’s latency is. But biological neurons have to have a
physical realization of some sort, and this kind of question becomes critical. I therefore think
the analogy between neurons and electronic components can be much more illustrative and
satisfying than the mathematical abstraction of neural networks as function approximators if
we want to better understand the behavior of real neurons. In the following, we will look at a
few common neuron models, and we will explore how each of them resembles a well-known
electronic component with a specific application in computer science or signal processing.
These analogies will allow us to transfer some intuitions from engineering disciplines to
neuroscience, and will thus help us better understand the computational capabilities and
limitations of various neuron models. Figure 3.1 shows an overview of neuron models and
closely related electric circuits.
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Figure 3.1. Neuron models, electron-
ics components and their relationships.
Boolean logic gates are equivalent to
binary neurons (left). They can be
extended by allowing multi-valued
outputs, resulting in the standard
linear-nonlinear neuron model in ei-
ther digital (top center ) or continu-
ous (bottom center ) form. Transmit-
ting these multi-valued outputs by a
pulse-density modulated code yields
the first-order ΔΣ modulator (top
right) for discrete time models or the
leaky integrate-and-fire spiking neu-
ron model (bottom right) for continu-
ous time.

3.2.1 Binary neurons are logic gates

To get started, let’s consider the most basic neuron model and logic calculus that McCulloch
and Pitts [27] proposed. It states that the neuron’s binary output 𝑦[𝑡] within some brief
time-interval 𝑡 is 1 (the neuron emits a spike) if its membrane potential exceeds a critical
threshold and 0 otherwise. Formally, 𝑦[𝑡] = 𝑓 (∑𝑁

𝑖=1 𝑤𝑖𝑠𝑖[𝑡]) − 𝑏, where 𝑓 (𝑥) = 1[0,∞)(𝑥) is
the Heaviside step-function, 𝑤𝑖 are the synaptic weights, 𝑏 is a bias term and 𝑠𝑖[𝑡] are the
values of the input signals at time-interval 𝑡. See figure 3.2 for an illustration. The neuron thus
maps its 𝑁 binary input signals onto a single binary output signal, and hence implements a
Boolean function. If we limit ourselves to ternary weights as McCulloch and Pitts did, i.e.
𝑤𝑖 ∈ {−1, 0, 1}, each input is either inverted (an inhibitory input), absent, or left unchanged
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(an excitatory input). We can then view the neuron as a logic gate that calculates whether at
least 𝑏 of its 𝑁 weighted inputs are equal to 1. This “gate” includes as special cases the AND

gate (𝑏 = 𝑁) and the OR gate (𝑏 = 1), negations thereof, the constant true gate (𝑏 = 0)
as well as the constant false gate (𝑏 > 𝑁); it is therefore a functionally complete set of
first-order logic. ² 2 The exclusive OR ( XOR ) gate,

however, was famously shown by
Minsky and Papert [20] to be not rep-
resentable by only a single layer of
such neurons.

Figure 3.2 shows a schematic of this model.
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Figure 3.2. A binary neuron is a spe-
cial boolean logic gate.

By assigning each input with an appropriate weight, we can thus construct arbitrary logic
circuits, or binary neural networks with ternary synaptic weights [103]. From the perspective of
deep learning, such extremely quantized networks may seem tedious, since they are difficult
to train using gradient based-methods. In fact, logic circuits are traditionally optimized using
numerically slower discrete optimization methods such as the Quine-McCluskey algorithm
[104]. But recent advances in deep compression techniques are leveraging the powerful
gradient-based optimization methods from deep learning for the optimization of ternary
neural networks (or XNOR networks) and have produced highly promising results [74].

3.2.2 Linear-nonlinear neurons are summing amplifiers

A natural extension of these binary neurons to real-valued signals leads to the typical
(discrete-time continuously-valued) linear-nonlinear neuron model that is typically used
in deep learning. Here, the hard threshold is simply replaced with a continuous, typically
monotonic non-linear function, e.g. a sigmoid function like 𝑓 (𝑥) = tanh(𝑥) or the rectified
linear function 𝑓 (𝑥) = max(0, 𝑥). Figure 3.3 shows a schematic. This reflects the observation,
that the firing rate of a biological neuron increases as a continuous function³ of its membrane 3 Strictly speaking, this only holds for

the so called class-I or type-I class of
neuron models; type-II neurons have
a discontinuous jump in their firing-
rate response [105].

potential (see e.g. chapter 6). We already saw in chapter 2 that a network of such continuous
linear-nonlinear neurons can be used to approximate arbitrary continuous functions, rather
than just Boolean functions. But more importantly, the nonlinear function 𝑓 that replaces the
step-function of the McCulloch-Pitts neuron can be chosen to be (piece-wise) differentiable,
which makes the entire network differentiable with respect to its parameters! Deep learning
makes use of this fact and relies on gradient-based optimization methods to fix the synaptic
weights.

Real-valued neuron
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Figure 3.3. The linear-nonlinear neu-
ron can be implemented in analog
electronics.

Of course, a similar device is also useful for countless signal processing applications, in
particular if we choose the rectified-linear function 𝑓 as the nonlinearity. The behavior of
this neuron could then, in engineering terms, be described as an ideal summing unity-gain
amplifier or buffer that clips off negative values — a common component e.g. in analog audio
circuits. See figure 3.3 for a schematic.
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Figure 3.4. The neuron model in fig-
ure 3.3 can be discretized into a digital
neuron model.

This linear-nonlinear model can be realized in hardware either by a digital or a fully
analog electronic circuit, and both options are used in practice. Computing directly with
analog voltages and currents is an extremely appealing concept and the cornerstone of
many neuromorphic hardware designs, because it can result in very high energy efficiency
and low latency. But analog computation comes with its own drawbacks: for one, analog
signals in continuous time are difficult to buffer or route and hence require dedicated physical
connections between the neurons, the number of which grows quadratically with the number
of neurons. This arrangement may work well in the three-dimensional brain, ⁴ but poses a

4 Even in the brain, the longer-ranging
synaptic connections of the white-
matter alone can make up half of the
cortex by volume [106].

serious challenge for neuromorphic hardware that must be laid out in two dimensions. In
addition to that, transmitting analog signals over large distances makes them susceptible
to noise. A digital implementation of the same model (see figure 3.4) can alleviate these
problems, but possibly at the cost of reduced accuracy due to quantization, increased circuit
size and complexity, and increased power consumption. This discrete-time, discrete-value
implementation is used in many digital neuromorphic circuits and is emulated by most DNN
software-models.
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3.2.3 (Leaky)-Integrate-and-Fire neurons are ΔΣ-modulators

Spiking neurons combine some benefits of analog computation (namely energy efficiency
and speed) with the benefits of binary transmission (namely noise robustness)⁵, because 5 For a neuromorphic hardware de-

signer, there is the additional bene-
fit of being able to route the discrete
spikes through a bus system.

they process signals in the analog domain (whether in a biological neuron’s dendrite or a
neuromorphic circuit) while sending out only a series of binary pulses (see also chapter 6)!

Leaky integrate-and-fire neuron
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Figure 3.5. A leaky integrate-and-fire
neuron converts analog or spiking
input signals into a continuous-time
spike-train. A negative feed-back loop
resets the neuron after each pulse.
The leaky integrator with leak-rate
𝛼 is represented here by its Laplace-
transform, 𝛼/𝑠+𝛼.

The simplest example of this is the well known integrate-and-fire neuron. In essence,
it integrates its input(s) over time and fires a pulse whenever the integral 𝑥[𝑡] exceeds a
threshold. A negative feed-back loop then resets the system, and the process begins anew.
Instead of a perfect integrator, a first-order exponentially decaying filter is often used to
describe the response of biological neurons, which accounts for the fact that absent any
input, the neuron’s membrane potential tends to return to its resting potential over time.
This model is called the leaky integrate-and-fire neuron (LIF neuron, see figure 3.5). Instead of
the exponential filter, other filters could be used as well, which affects the neuron’s response
in interesting ways that we’ll discuss in chapter 4.

The firing-rate of such a neuron encodes the input in a very similar way to the linear-
nonlinear neuron, it only uses a pulse-based code to transmit its output. For band-width
limited signals, this encoding can be entirely lossless [107], but it may require rather large
firing rates (see chapter 6 for a discussion).
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Figure 3.6. A first-order Δ-modulator
converts analog input signals into a
clocked sequence of binary pulses.
A negative feed-back loop resets
the component after each pulse.
The discrete-time integrator is repre-
sented here by its 𝑧-transform, 1/𝑧+1.

Such pulse-based communication schemes are also popular in electronics. In fact, the
LIF neuron directly resembles a very popular electronic circuit, the so-called ΔΣ-modulator,
which is an integral part ofΔΣ analog-to-digital converters [108] and pulse-width-modulators
(PWM). In this comparison, the dendrite of the LIF neuron corresponds to a demodulator,
which converts, sums and integrates the pulse-based input signals into a single analog signal,
while the spike-generation mechanism at the soma uses Δ-modulation to encode whenever
this signal has increased beyond a fixed threshold. Figure 3.6 shows a schematic.

To improve the noise characteristics of analog-to-digital converters further, another feed-
back can be added that subtracts the recent average output signal from the input and thus
prevents the accumulation of quantization errors over time. This, too, has a direct counterpart
in biological neuron models, namely the adaptive exponential integrate-and-fire neuron
(AdExp, [109]), which also happens to be a more faithful representation of biological spiking
neurons than the simpler LIF neuron [110]. We will discuss similar adaptation mechanisms in
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chapter 5. By replacing the first-order integrator by higher-order filters, this can be improved
further — an idea that we will also return to in chapter 4.

In an electronics context, the pulse-train generated by such a circuit constitutes an “over-
sampled” digital pulse-density modulated (PDM) signal, which can then either be decimated, i.e.
converted into a higher bit-precision signal at a reduced sampling rate, or directly transmitted
over a digital connection. From this perspective, the (time-varying) density of the binary
pulses (or firing rate) encodes the (time-varying) value of the analog signal. This view mirrors
the rate-coding perspective, which we will look at in chapter 6.

A different perspective would be to treat the circuit as an event-detector, which emits a
spike once it has accumulated enough input. We will discuss this alternative in chapter 7.

3.3 Closing the gap

For machine learning applications of artificial neural networks, the physical implementation
of the individual neuron is of little concern — it represents an abstract mathematical function
that is viewed as an “atomic operation” inside a larger algorithm. But from both a neuroscience
and a neuromorphic computing perspective, the internal mechanisms that generate this
behavior are of great interest. The two fields can therefore benefit from each other, by using
engineeringmethods to investigate the function of biological neurons, or by taking inspiration
from biological mechanisms for the development of a new generation of computing hardware.
Ultimately, I believe these two disciplines ought to come together in a single discipline which
I’ll just refer to as neuromorphic science — the study of neuroscience-inspired physical
mechanisms of information processing.

In the following, I will therefore occasionally use tools from signal processing and en-
gineering to describe the behavior and information processing capabilities of biological
neurons, and focus on the kind of questions that is also relevant for neuromorphic design. In
chapter 7, I will then present a neuron model derived entirely from biological observations,
along with an efficient neuromorphic circuit to implement it.
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A single neuron in the brain is an incredibly complex machine that even today we don’t
understand. A single “neuron” in a neural network is an incredibly simple mathematical
function that captures a minuscule fraction of the complexity of a biological neuron. So
to say neural networks mimic the brain, that is true at the level of loose inspiration, but
really artificial neural networks are nothing like what the biological brain does.

— Andrew Ng

4 Dendritic filters and delays

In chapters 2 and 3, we discussed information processing in artificial neural networks of
simple point-neurons. However, while these models offer a very convenient simplification,
they don’t account for the complex structure and behavior of real dendritic arbors, the
behavior of which is better described by neural cable theory [111]. If we take the attenuation
and delays into account that inevitably occur as membrane potentials are propagated along
the dendrite, then even the location of a synapse on the spatially extended dendrite influences
the effect of an input signal on the neuron’s firing rate [112]! This makes the behavior much
more difficult to describe, but it could also increase the computational complexity of the
individual neuron considerably by endowing it with a notion of time or memory. Among the
first to see the serious implications of this arrangement was, once again, von Neumann [35]:

It may well be that certain nerve pulse combinations will stimulate a given neuron not simply
by virtue of their number but also by virtue of the spatial relations of the synapses to which they
arrive. That is, one may have to face situations in which there are, say, hundreds of synapses
on a single nerve cell, and the combinations of stimulations on these that are effective (that
generate a response pulse in the last-mentioned neuron) are characterized not only by their
number but also by their coverage of certain special regions on that neuron (on its body or on
its dendrite system, cf. above), by the spatial relations of such regions to each other, and by
even more complicated quantitative and geometrical relationships that might be relevant. […]
Lastly, I would like to mention that systems of nerve cells, which stimulate each other in various
possible cyclical ways, also constitute memories. These would be memories made up of active
elements (nerve cells).[35].

In a very similar sense, the delayed interaction of neurons by synaptic spikes, which could
be seen as an imperfection of an idealized neuron and thus a nuisance to be avoided, also
increases the complexity of the neuron’s behavior by introducing long-lasting dependencies,
i.e. memory. These complex nonlinear dynamics and long memory are very appealing for
reservoir computing, where neurons with delayed feedback have recently been evaluated
as a potential computational substrate. But like many other concepts mentioned in this
thesis, the idea to use delayed self-coupling as a form memory and computing device is
actually surprisingly old and goes all the way back to Turing and Copeland [4], who proposed
building a computer based on the delayed interaction of shock waves in tubes of mercury:

It is proposed to build ‘delay line’ units consisting of mercury […] tubes about 5’ long and 1” in
diameter in contact with a quartz crystal at each end. The velocity of sound in …mercury […]
is such that the delay will be 1.024ms. The information to be stored may be considered to be a
sequence of 1024 ‘digits’ (0 or 1) […] These digits will be represented by a corresponding sequence
of pulses. The digit 0 […] will be represented by the absence of a pulse at the appropriate time,
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the digit 1 […] by its presence. This series of pulses is impressed on the end of the line by one
piezo crystal, it is transmitted down the line in the form of supersonic waves, and is reconverted
into a varying voltage by the crystal at the far end. This voltage is amplified sufficiently to give
an output of the order of 10 volts peak to peak and is used to gate a standard pulse generated
by the clock. The pulse may be again fed into the line by means of the transmitting crystal, or
we may feed in some altogether different signal. We also have the possibility of leading the
gated pulse to some other part of the calculator, if we have need of that information at the time.
Making use of the information does not of course preclude keeping it also [4].

Therefore, two aspects of biological neurons that are often disregarded as a nuisance,
dendritic filtering and synaptic transmission delays, could theoretically serve an important
purpose for neural computation. But is all this complexity really instrumental, or is it just
an inevitable side effect of some biological process, through which nature approximates a
much simpler mechanism? In this chapter, we’ll make use of some simple tools from signal
processing to investigate the role of dendritic filtering and delays for neural information
processing.

4.1 Terminology

Before we get started, I’d like to introduce a few terms that are used inconsistently across
different disciplines: The general mathematical formalism we’ll use is temporal convolution,
which is also called filtering in engineering domains. Since physical systems cannot be
retroactively affected by future events, causal filters play a special role, which are linear
integral operators that only depend on the values of the signal in the recent past. Such a
filter operator Κ can be applied to a continuous-time signal 𝑠 by the convolution

Κ𝑠(𝑡) = (𝑠 ∗ 𝜅)(𝑡) = ∫
𝑡

−∞
𝑠(𝜏 )𝜅(𝑡 − 𝜏)d𝜏

where 𝜅 is the kernel or impulse-response function of Κ. Delays are a special case of causal
filtering that can be represented by the convolution (𝑠 ∗ 𝜅)(𝑡) = 𝑠(𝑡 − Δ𝑡) with a shifted
Dirac-𝛿-distribution kernel of the form 𝜅(𝑡) = 𝛿(𝑡 − Δ𝑡), where Δ𝑡 is the duration of the delay.
Conversely, we can interpret a continuous filter kernel 𝜅 as the limiting case of a linear
combination of delay terms (for a derivation, see appendix A.1). This equivalence is used in
the (digital) signal processing domain to design filters for periodically sampled discrete-time
signals [113, p. 67]. Therefore, filtering and delays are really two sides of the same coin!

I will also use the one-sided Laplace transform ℒ{𝜅}(𝑠) = ∫∞0 𝜅(𝑡) exp(−𝑠𝑡)d𝑡, which is
closely related to the Fourier transform, to represent a filter with kernel 𝜅(𝑡) in the frequency
domain [114]. The Laplace transform can simplify the analysis greatly, because it allows
us to represent a concatenation of multiple filters in the frequency domain simply by the
multiplication 𝜅1(𝑠) ⋅ 𝜅2(𝑠) ⋅ 𝜅3(𝑠) ⋅ 𝜅4(𝑠) ⋯ of their individual transformations, rather than by
the convolution 𝜅1(𝑡) ∗ 𝜅2(𝑡) ∗ 𝜅3(𝑡) ∗ 𝜅4(𝑡) … in the time domain. If it is clear from context,
I will just write 𝜅(𝑡) and 𝜅(𝑠) ≔ ℒ{𝜅}(𝑠) to denote the filter kernel in the time- or the
Laplace-domain, respectively.

4.2 Dendritic filtering improves information transmission

Why should we care about the filtering effect of dendrites, in the first place? For one,
because including it greatly increases the accuracy with which the firing-rates of biological
neurons can be approximated when compared to simpler point neurons [3, 115]. But more
importantly, filtering offers an opportunity to improve the information transmission and
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processing capabilities of individual neurons. This same argument can be made in multiple
ways, and we’ll look at five different perspectives in the following.

4.2.1 Denoising

From the perspective of information theory, the linear-nonlinear neuron is a noisy channel
with limited capacity to transmit information (see also chapter 2 of [7] and the later chapter 5).
This is formalized in the Shannon-Hartley theorem [7, 113], which states that an analog
channel’s ability to transmit information (in some frequency band) is limited by the channel
capacity 𝐶 = 𝐵 log2(1 + 𝑅), where 𝐵 is the analog channel bandwidth and 𝑅 is the signal-
to-noise-ratio, i.e. the ratio of the expected power of the signal to be transmitted relative to
the power of the independent noise signal. Since the amount of transmitted information
adds up linearly across distinct frequency bands, it follows that a carefully chosen filter
can selectively amplify or attenuate different frequency bands to boost the signal while
suppressing the noise. Therefore, a key benefit that an appropriately chosen dendritic filter
can offer for information transmission is to improve the signal-to-noise-ratio and thus the
channel capacity of the neuron. ¹ In general, it will be impossible to completely filter out all 1 The simplest example is when the

signal and the noise occupy distinct
frequency bands altogether, in which
case a simple band-pass filter can be
used to fully isolate the signal and sup-
press the noise.

noise this way, because the spectra of signal and noise are likely to overlap. But the signal-to-
noise ratio can always be optimized by the so-called (causal) Wiener filter or matched filter
[116], which shapes the spectrum in a way that maximizes the relative power of the signal
while minimizing that of the noise.

4.2.2 Pattern detection and sparse coding

Denoising can also be understood in a rather different way. Let’s consider the special case
that the signal 𝑠(𝑡) consists only of repetitions of some stereotypical pattern 𝑔(𝑡), 0 ≤ 𝑡 ≤ 𝑇
with duration 𝑇 subject to white noise 𝜂(𝑡), i.e.

𝑠(𝑡) = ∑
𝜏𝑖≤𝑡

𝑔(𝑡 − 𝜏𝑖) + 𝜂(𝑡) = (𝑔 ∗ 𝜒)(𝑡) + 𝜂(𝑡) with 𝜒(𝑡) = ∑
𝜏𝑖≤𝑡

𝛿(𝑡 − 𝜏𝑖).

Then the power spectrum of the noise is flat, and the kernel of the Wiener filter simplifies to
the time-reversed pattern ℎ(𝑡) = 𝑔(𝑇 − 𝑡). Denoising the signal 𝑠 with this filter ℎ yields the
signal

(ℎ ∗ 𝑠)(𝑡) = (𝑟 ∗ 𝜒)(𝑡) + (ℎ ∗ 𝜂)(𝑡) where 𝑟(𝑡) = (ℎ ∗ 𝑔)(𝑡) = ∫
𝑡

0
𝑔(𝜏)𝑔(𝜏 + 𝑇 − 𝑡)d𝜏 for 𝑡 ≤ 𝑡.

So whenever the stereotypical pattern 𝑔 is seen in the input, the filter responds with 𝑟, the
autocorrelation function of 𝑔, which always has a distinct maximum at 𝑡 = 𝑇. These peaks
in the signal can be easily detected by an appropriately chosen threshold despite the noise,
because filtering the white noise 𝜂 with the same kernel merely results in colored noise with
comparatively lower amplitude. Therefore, a neuron with appropriate dendritic filter can
become an efficient pattern detector (with delay 𝑇) for the stereotypical pattern 𝑔. Detectors
of this sort have long been used, for example, in radar systems to detect reflected radio pulses
of known shape [116], and the same ideas transfer to other time-series signals. In chapter 7,
we’ll contrast this to a rather different type of pattern detector.

4.2.3 Deconvolution

The problem of pattern detection can also be approached from a different perspective:
Imagine that in the same setting as in section 4.2.2 we’d like the filter ℎ to directly return
(ℎ ∗ 𝑠)(𝑡) = 𝜒(𝑡) + (ℎ ∗ 𝜂)(𝑡) rather than (𝑟 ∗ 𝜒)(𝑡) + (ℎ ∗ 𝜂)(𝑡). This inverse problem, called
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deconvolution, is unfortunately generally ill-conditioned² and outright impossible if we 2 For a discrete convolution operator,
which can be represented by a ma-
trix, this can be done through itera-
tive matrix-inversion methods with
strong regularization [117], and it be-
comes more complex for continuous-
time operators.

are limited to causal filters. ³ But we could introduce another filter 𝑞 and try to solve the

3 Just consider, for example, the ker-
nel 𝛿(𝑡 − 𝜏) with a delay 𝜏 > 0. Invert-
ing this filter would imply inverting
the time-shift, which would require
an acausal “negative delay”!

relaxed problem ℎ ∗ 𝑠 = 𝑞 ∗ 𝜒 + ℎ ∗ 𝜂 instead, i.e. ℎ ∗ 𝑔 = 𝑞. If we choose 𝑞 well, this can be
(approximately) solved for ℎ even if 𝑔 cannot be inverted. Looking back at section 4.2.2, we
can e.g. choose 𝑞 = 𝑟, which again gives us the matched filter ℎ(𝑡) = 𝑔(𝑇 − 𝑡). Or we could
choose the filter 𝑞 to approximate a delay-line with delay 𝑇 ′ > 𝑇, which would allow us to
approximate a delayed deconvolution (with delay 𝑇 ′)!

4.2.4 Equalization

Another way of looking at the same idea is the equalization [118] (sometimes also called
whitening) of signals, which removes temporal correlations from the signal itself and thus
leads to an equalized or flat power spectrum, resembling that of white noise (hence the
name). This is done in the context of communication systems with bandwidth-limited
communication channels, where the most information can be transmitted if all the available
spectral bandwidth is used to convey relevant (i.e. non-predictable) information. A very
similar argument can be made for the neuron as well, and we’ll return to this idea also in
chapter 5 when we talk about optimal firing rate distributions.

4.2.5 Predictive Coding

A more biologically motivated perspective is predictive coding (see e.g. chapter 6 of [7]),
which argues that the dendritic filter can subtract predicted future inputs, leaving only the
residual error to be transmitted by the neuron. The benefit of such an encoding is, again,
that (given a sufficiently good prediction) these residuals are temporally decorrelated (i.e.
equalized), which leads to an information theoretically and metabolically efficient encoding
[7, chapter 6]. This has been experimentally observed in visual [119, 120] and auditory
neurons [121], as well as in other modalities and animals [6], and is believed to play an
important role for neural information processing in general [122].

4.3 Dendritic filtering in the linear-nonlinear model

We saw that, when we view the neuron as a signal-processing device, the ability to imple-
ment dendritic filters is extremely attractive. We will now investigate, how this could be
implemented on a mechanistic level.

If we are willing to ignore all the non-linear effects that can occur in neural dendrites,
such as dendritic plateau potentials,⁴ and instead focus exclusively on the linear effects 4 I actually believe that these non-

linear effects are absolutely crucial for
dendritic computation, and I argue for
this position in chapter 7.

described by neural cable theory [111], then the behavior of a dendrite can be approximated
by assigning a specific impulse response to each synapse, depending on its location on the
dendrite. The somatic membrane potential can then be approximated by a linear combination
of these differently filtered synaptic inputs. The result is a more general type of linear-
nonlinear neuron model, which I’ll just call the “filter-nonlinear” model in the following (see
figure 4.1).

A very simple special case of this model is Rall’s so-called ball-and-stick model [123]:
Under certain simplifying assumptions (e.g. specific relationships between the thickness of
dendritic branches), the effect of a synaptic input onto the soma’s membrane potential only
depends on the distance of the synapse to the soma— the complex tree-shaped topology of the
dendrite can be ignored altogether. In this case the dendrite therefore behaves equivalently
to a single cylindrical dendrite as shown in the top panel of figure 4.5. This cylinder can be
approximated by a chain of multiple compartments, each of which receives and filters input
from its “up-stream” neighbor compartment as well as synaptic inputs. How many of these
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Filter-Nonlinear neuron

+𝒦1

𝑥1(𝑡)
𝑠1(𝑡)

𝒦2

𝑥2(𝑡)
𝑠2(𝑡)

𝒦3

𝑥3(𝑡)
𝑠3(𝑡)

⋮⋮

𝑦(𝑡)

Figure 4.1. A linear-nonlinear neu-
ron, where the dendrite is modeled
by a set of filters 𝒦𝑖. Each synap-
tic input 𝑠𝑖(𝑡) now produces a differ-
ent post-synaptic membrane poten-
tial 𝑥𝑖(𝑡), which are then summed up
and non-linearly transformed at the
soma.

compartments a synaptic input has to traverse depends on the distance of the synapse to
the soma, therefore the dendrite can be also viewed as a filter bank. See the middle panel of
figure 4.5 for an illustration.

Rall’s ball-stick model

Neuron with dendritic filter-bank

Neuron with dendritic feedback filter-bank
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Figure 4.2. Top: The ball-and-stick
model [123] abstracts the neuron’s
dendritic arbor into a single “equiv-
alent cylinder” or cable, on which the
propagation of activity can be mod-
eled by a partial differential equation.
The impulse response of an input sig-
nal depends on the location along the
cylinder. Middle: A neuron with a
dendrite modeled by a tapped filter-
bank composed of individual filters 𝜅𝑖.
Each tap of the filter-bank provides
a local state-variable 𝑥𝑖(𝑡). The neu-
ron’s output 𝑦(𝑡) = 𝑓 (𝑥1) is then just
a non-linear function of the somatic
membrane potential 𝑥1. Bottom: By
adding a linear feedback term, more
complex filters can be constructed.

Just like forward-propagation, the effects of backward-propagation of membrane potential
in the retrograde direction, i.e. away from the soma, can be also incorporated by adding
linear feedback terms (see the bottom panel of figure 4.5). In this model, the weights of the
(feed-forward) input and the weights of the feedback term parameterize a family of dendritic
filters that can approximate the filtering effect of a dendritic tree. ⁵ 5 Curiously, this type of dendritic fil-

ter with feed-back resembles a well
known topology of infinite impulse
response filters for electrical signal
processing [124]!

In the following, we’ll look at two particularly simple and relevant implementations of
such a dendritic filter banks:
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4.4 Dendritic filtering in the Gamma Neuron

If we implement the dendrite shown in figure 4.5 as a bank of identical first-order low-pass
filters with transfer function 𝜅𝑖(𝑠) =

𝛼
𝑠+𝛼 and time-constant 𝛼, then this much simpler multi-

compartment model can be described by a system of ordinary differential equations instead
of Rall’s original partial differential equation. The resulting neuron is shown in figure 4.3.

Gamma neuron with linear feedback
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Figure 4.3. The GammaNeuron uses a
filter-bank composed of identical first-
order filters with transfer function
𝛼

𝑠+𝛼 to model the dendrite. Inputs are
projected onto the filter taps through
multiple synapses with weights 𝑤𝑗,𝑖.
Similarly, feed-back paths can be
added with weights 𝑣𝑗. These weights
parameterize the dendritic filter. A
nonlinear activation function is ap-
plied to the filter output.

The low-pass filter response of each tap resembles the simplified sub-threshold dynamics
of the leaky integrate-and-fire neuron, and the filter bank can hence be interpreted as a chain
of weakly coupled dendrite compartments. The result is the versatile Gamma-neuron [125],
which can be represented by a particularly simple system of ordinary differential equations.
This model owes its name to the fact that a synaptic spike arriving at the 𝑘th compartment
from the soma would be subjected to the transfer function (𝛼/𝑠+𝛼)𝑘, which is the Laplace
transform of the density function of some Gamma distribution. The impulse response of the
dendrite therefore becomes broader and broader with every additional compartment that a
spike has to traverse on its way to the soma (see figure 4.4).
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Figure 4.4. Open-loop impulse-
responses of the somatic membrane
potential in response to synaptic in-
put spikes received at various taps
along the dendrite. The impulse re-
sponses have the form of the proba-
bility density function of Gamma dis-
tributions, hence the name Gamma
Neuron.

Now, if the same input signal 𝑠𝑖 arrives at various taps 𝑗 along the dendrite through
multiple synapses with weights 𝑤𝑗,𝑖, then the total effect of the dendrite on that input is
a linear combination of the individual taps’ responses. By adding a feedback path with
additional coefficients 𝑣𝑖, we can extend this neuron model to allow much more complex
filters to be implemented by the dendrite [126]. This family of filters can be formalized nicely
(see the note below) and includes a lot of interesting special cases: For example, low-, high-
and band-pass filters can be implemented with just two taps, and with increasing order the
(open-loop) impulse response of the taps more and more resembles Gaussian filters. Also, for
any filter 𝜅 that can be implemented by a Gamma Neuron, the derivative 𝜅′ can be trivially
implemented as well. See appendix A.3 for derivations.

If we put all of this together, a single Gamma neuron could therefore theoretically

(a) extract relevant frequency-bands from each of its multiple input signals,

(b) equalize each signal to extract the maximum amount of information,

(c) calculate derivatives or (“leaky”) integrals thereof,
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Note: The ring of Gamma filters

The filters that can be implemented by the Gamma neuron span a finite-dimensional
function space, parameterized by the input and feedbackweights.With a bit of algebra,
we can make this more precise (see appendix A.2 for a derivation): The space of filters
that can be implemented by the Gamma neuron corresponds to exactly those with a
proper rational transfer function in the Laplace domain. The addition and convolution
(i.e. concatenation) of two implementable filters yields another implementable filter,
but the inverse 𝜅−1 of an implementable filter 𝜅 is in general not a proper rational
function (i.e. 𝜅−1 is acausal) and thus not implementable. Therefore, the class of
filters that can be implemented by such a filter bank forms a commutative ring (or
rather pseudo-ring) without multiplicative identity and inverse. This space of filters
is extremely general; it contains all analog linear filters that can be implemented by
networks of lumped electric elements, i.e. discrete resistors, capacitors and inductors
[127], and any transfer function can at least be well approximated by such a rational
function, also called a Padé approximant [128].

(d) and linearly combine them into a single signal that is then

(e) passed through a nonlinearity.

This also makes the individual neuron at least as powerful as a PID controller [129], a
versatile tool from control theory and much more impressive than the simple logic gates we
saw in chapter 3!

In contribution 4, we extend this model further and employ a synaptic plasticity rule to
train individual (spiking) Gamma neurons to detect specific temporal patterns in their input.

Contribution 4: Training the Gamma Neuron for event detection

We extended the Gamma Neuron to a spike-based temporal pattern detector for a
conference poster presented first at the Cognitive Computing 2018 conference in
Hannover, Germany, and then again at the Machine Learning Summer-School (MLSS)
2019 held in Cape Town, South Africa. Here we investigated how this type of neuron
model could be trained to produce a spike-based classification of temporal patterns
through a local, reward-modulated synaptic learning rule.

Reference (see also appendix C, page 135ff for the full text):

P. Nieters, J. Leugering, and G. Pipa, “Neuromorphic Adaptive Filters for event
detection, trained with a gradient free online learning rule,” presented at the Machine
Learning Summer School (MLSS-Africa 2019), 1, 2019.

4.5 Computing with synaptic delays

We already saw above that delays are just a special case of causal filtering and vice versa, but
delays deserve special treatment in the study of neural systems. They are a fact of life, since
no physical system can respond instantaneously to its input — and of course neurons are no
exception. However, even minuscule delays can make otherwise benign dynamical systems
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difficult to control or even chaotic [130], which is why they are often seen as a nuisance
to be avoided by theoreticians and engineers alike. But biological neurons are inherently
analog machines that work asynchronously and in real time, so we have no choice but to
recognize and understand the effect of delays on their dynamics. As we shall see, this might
be a blessing in disguise, since there are even (somewhat surprising) ways in which delays
might actually improve the computational capabilities of neurons and networks!

To understand how delays, e.g. caused by synaptic transmission, could be used construc-
tively by biological neurons, we need to make a brief detour into (digital) signal processing
and control theory.

4.5.1 Delay-embeddings, state-estimation and Koopman-control

So far, we looked at continuous-time signals and filters, but a lot of the intuitions about
information transmission come from the study of sampled discrete-time systems. The connec-
tion is established by the Nyquist sampling theorem [118, 124], which states that any analog
bandwidth limited signal can be fully represented without loss of information by samples of
the signal, if they are measured at a sufficiently high finite sampling rate. In that context, the
same effect that a continuous filter would have on a continuous signal can be achieved by
filtering the sampled signal with a discrete-time filter, which can be implemented by a linear
combination of the outputs of a tapped delay-line. ⁶ Just like in the Gamma neuron, a linear 6 This is analogous to how we used

a continuous filter bank above to
construct the dendritic filter of the
Gamma neuron.

feedback loop can be used to extend these filters, which allows us to also construct infinite
impulse response filters. See [118, 124, 131] for an introduction into filter design and tapped
delay-lines.

Neuron with tapped delay-line

Neuron with (multi-)delayed feedback
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Figure 4.5. Top: A neuron with den-
dritic or synaptic delays modeled by
a tapped delay-line composed of in-
dividual delay elements with trans-
fer function 𝑒−𝜏𝑠 and identical delay
𝜏. This topology can implement finite
impulse-response filters. Bottom: By
adding a linear feedback term, infinite
impulse-response filters can be con-
structed.

But of course, tapped delay-lines can also be utilized in a continuous-time setting. In that
context, we’d say that the outputs of all the taps constitute a delay embedding of the signal —
a higher dimensional representation of the signal and its recent past. Such an embedding
contains a lot of information about the signal that can, for example, be used to estimate
derivatives or to forecast the signal into the future. See also the note below. Under the more
general heading of embedding theory, this has many practical applications for the study of
dynamical systems, signal analysis and causality. Schumacher [132] has a great discussion of
this subject. One fairly recent application of these ideas has been in control theory, specifically
Koopman control [133–135], which comprises many state-of-the-art approaches to controlling
non-linear systems by the use of delay embeddings.
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Note: Derivatives, finite differences and delay embeddings

To give an intuitive example, how delay embeddings can be used to extract relevant
information from a continuous-time signal, let’s consider the definition of (higher-
order) derivatives. The left derivative of a function 𝑓 can be defined as 𝑓 ′(𝑡) =
limΔ𝑡→0

𝑓 (𝑡)−𝑓 (𝑡−Δ𝑡)
Δ𝑡 . So if we can produce a delayed signal ̃𝑓 (𝑡) = 𝑓 (𝑡 − Δ𝑡) for a

small delay Δ𝑡, we can use the signals 𝑓 and ̃𝑓 to continuously estimate the derivative
𝑓 ′. In fact, the same idea can be applied repeatedly: if 𝑓 ′(𝑡) ≈ 𝑓 (𝑡)−𝑓 (𝑡−Δ𝑡)

Δ𝑡 and

𝑓 ′(𝑡 − Δ𝑡) ≈ 𝑓 (𝑡−Δ𝑡)−𝑓 (𝑡−2Δ𝑡)
Δ𝑡 , then 𝑓 ″(𝑡) ≈ 𝑓 ′(𝑡)−𝑓 ′(𝑡−Δ𝑡)

Δ𝑡 ≈ 𝑓 (𝑡)−2𝑓 (𝑡−Δ𝑡)+𝑓 (𝑡−2Δ𝑡)
Δ𝑡2

, and
so on. We can thus estimate the first 𝑁 derivatives of a signal by a linear combination
of 𝑁 + 1 delayed versions with delays 𝑘 ⋅ Δ𝑡, 𝑘 ∈ {0, 1, 2, … , 𝑁 }. I’ll let 𝛿𝑘(𝑡) denote the
delay line 𝛿(𝑡 − 𝑘Δ𝑡). The mapping

𝑓 (𝑡) → ((𝛿0 ∗ 𝑓 )(𝑡) (𝛿1 ∗ 𝑓 )(𝑡) (𝛿𝑁 ∗ 𝑓 )(𝑡))

is then a so-called delay embedding, which embeds the one-dimensional time-varying
signal 𝑓 into an 𝑁 + 1-dimensional space. This can be implemented by a tapped delay-
line composed of 𝑁 concatenated delay elements, each with the same delay Δ𝑡. From
this embedding, approximate derivatives of order ≤ 𝑁 can be trivially read out by
linear combinations of different taps’ outputs. Therefore, an 𝑛-tap delay-embedding
contains enough information about the signal to approximate a Taylor-approximation
of order 𝑛 − 1 at the current point in time!

4.5.2 Delayed nonlinear feedback

So far, we only discussed linear systems with delay, but what if we include nonlinear feedback-
loops? The result is a nonlinear delay- or retarded differential equation, which has an infinite
dimensional state-space and can exhibit extremely complex, if not chaotic, behavior. The
inherent complexity of such systems with nonlinear delayed feedback can introduce very
long-lasting memory effects (see also [130] for more examples). ⁷ 7 One example of such systems are

feedback shift registers, whose very
long memory is used for the gener-
ation of maximally long sequences of
non-repeating pseudo-random num-
bers [136]!

4.5.3 Filter- or multi-delay-coupled reservoir computing

The idea to use the longmemory of systemswith delayed nonlinear feedback also underlies an
admittedly weird neuron model called the single node, multi-delay-coupled reservoir computer
(SNMDCR). It is an extension of the slightly simpler single node, delay-coupled reservoir
computer (SNDCR), which is situated between machine learning, neuroscience and optical
neuromorphic hardware [137].⁸ We extend this model in contribution 5 to use multiple 8 The original physical realization of

the system was implemented by self-
coupled lasers with optical delay ele-
ments.

delayed feedback terms (hence the slight change in name), which considerably increases
the neuron’s ability to learn complex temporal dynamics. The resulting neuron model is
summarized in figure 4.6.

SNMDCR neuron
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Figure 4.6. A single-node multi-delay-
coupled reservoir. It resembles the neu-
ron in figure 4.3, but with delay ele-
ments instead of exponential filters
for all but the first tap. Each tap de-
lays the signal by 𝜏. Note that the
feedback-signal is here taken after the
nonlinearity, so the behavior of the en-
tire system is no longer of the simple
linear-nonlinear form.
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Contribution 5: Neuromorphic computation in multi-delay coupled models

In this paper, we explored how delayed feedback, in particular the interaction between
differently delayed feedback-loops, can be exploited to endow a single neuron, which
could be implemented in an electrical or photonic circuit, with memory and the
capability to compute complex functions of its input history. For a simple single-node
multi-delay-coupled reservoir neuron, we show how the relationship between the
delay terms leads to different complexity of behavior, and hence different performance
of the trained neuron across different time-series regression tasks. Curiously, we can
show that — and why — co-prime delays result in the best performance, and thus
give some intuition for the complex behavior of delay-coupled systems.

Reference (see also appendix C, page 136ff for the full text):

P. Nieters, J. Leugering, and G. Pipa, “Neuromorphic computation in multi-delay
coupled models,” IBM Journal of Research and Development, vol. 61, no. 2/3, 8:7–8:9, 1,
2017, issn: 0018-8646, 0018-8646. doi: 10.1147/JRD.2017.2664698.

Due to the combination of continuous dynamics and delayed feedback, the SN(M)DCR
must be modeled by delay-differential equations, and it shows highly complex if not chaotic
behavior, depending on the precise choice of the relative delays. We use this neuron with
its complex dynamics as a substrate for reservoir computing, i.e. we inject various task-
specific input signals into the neuron and use a weighted linear combination of the delay
embedding of the neuron’s output as a readout. As usual, (only) these weights are optimized
such that the readout approximates the desired output signal of the task. To investigate the
impact of the precise choice of delays on the ability of the SNMDCR to produce interesting
behavior, we look at a neuron with just two feedback paths with different delays 𝜏1 and 𝜏2.
We systematically vary one of the two delays 𝜏2 while keeping the other fixed, and for each
choice of 𝜏2 optimize the neuron’s weights for some simple task, like estimating the N-bit
parity of a binary signal or approximating a fixed NARMA model of a continuously-valued
signal. Remarkably, the SNMDCR performs very well on either task, but its performance
critically depends on the relative timing of the two delays and deteriorates whenever this
ratio approaches a ratio of small integers such as 1 ∶ 1, 1 ∶ 2, 2 ∶ 3 etc. Since the SNMDCR
is described in discrete time and the delays are integer multiples of these time-steps, we
can compare the location and magnitude of the performance drops to the greatest common
divisor of the two delays and find a clear correspondence.

To get a better mechanistic understanding of how and why the SNMDCR works (and
when it fails), we analyze how it integrates and recombines information over time, and
conclude that co-prime delays provide the best “mixing” over time with the longest memory,
which appears to be the critical factor for performance on these tasks. While these results are
specific for an unusual type of neuron model and cannot be directly transferred to others⁹, 9 For example, in the continuous-time

context of biological neurons, the in-
herently discrete concepts like co-
primality and greatest common divi-
sors are not applicable.

they nevertheless provide a useful intuition: Dendritic filtering and synaptic delays can be
used to not only extract relevant information from time-varying signals, but also to improve
information transmission, provide volatile memory, and implement computation within a
single neuron!

http://dx.doi.org/10.1147/JRD.2017.2664698
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4.6 Dendritic filtering in the real world

We have seen for a couple of examples above how a neuron could, in principle, make con-
structive use of the delays and filtering effects introduced by synaptic transmission and the
dynamics of ion currents in the dendrite. A natural question to ask now is: How much, what
for and how, if at all, do biological neurons actually use dendritic filtering? A second question
is: Should we use dendritic filtering in machine learning models of neural networks?

On the one hand, there has been a lot of biological evidence that shows dendrites using
delays and filtering to do muchmore than just instantaneous linear combinations of incoming
signals. For example, the distance-dependent filtering and delaying effect of dendrites has
long been proposed as a critical feature for binaural localization of sounds [138]. There is
even some evidence that these transmission delays can be fine-tuned by controlling the
myelinization of axons [139], which would represent an entirely new form of plasticity
mechanism! The huge theoretical potential that dendritic filtering can offer for processing
time-series signals also makes it likely that evolution would have found ways to exploit it in
some way.

On the other hand, it is also tempting to entirely brush off the intimidating complexity
of biological dendrites as functionally irrelevant “implementation details”, and there is also
biological evidence to support this view. For example, the attenuation along the dendrite
appears (in some cases) to be precisely counteracted by some other mechanism like synaptic
scaling or “synaptic democracy” [140, 141]. This could ensure that each synaptic spike,
regardless of its location on the dendrite, has the same effect on the somatic membrane
potential. Through such regulatory mechanisms, an apparently complex nonlinear neuron
could produce a rather simple linear behavior that is well described by the point-neuron
model, after all. ¹⁰ But more critically, the real time-constants of dendritic filtering and 10 However, such a regulatory mecha-

nism might only affect the amplitude,
not the delay, of a synaptic input as
a function of its location on the den-
drite. In that case, the arguments of
this section could still be applied.

synaptic delays (on the order of microseconds to tens of milliseconds) might just not be
long enough to implement most useful filters on behaviorally relevant time-scales. And on a
more fundamental level, the strongly nonlinear effects that can be observed within small
dendritic branches call the assumption into question, that the temporal dynamics can be well
approximated by linear filters, at all! Instead, the interaction of active, localized nonlinear
processes within the dendrites need to be taken into account [142]. We will return to this
point in detail in chapter 7.

It might therefore turn out, that biological neurons make only limited and rather specific
use of (linear) dendritic filtering, e.g. for the purpose of adaptation (see chapter 5) and for
the processing of spiking inputs (see chapter 6), while relying on different mechanisms on
the neuron or network level, such as active dendritic processes (see chapter 7) or recurrent
networks (see chapter 2) for more sophisticated temporal integration and processing of
information.

Of course, for machine learning models and neuromorphic hardware these biological
constraints do not apply, and dendritic filtering is certainly worth considering. However,
the introduction of dendritic filters (in analog or digital hardware as well as in software)
complicates the individual neuron substantially, and the additional slow dynamics makes
temporal credit assignment difficult. Models like the Gamma neuron are therefore more
difficult to simulate and to train using conventional gradient-based methods (see contribu-
tion 4). I therefore see the most promising applications of these ideas in conjunction with
local learning rules (e.g. for unsupervised equalization of signals) and/or in the context of
analog neuromorphic hardware, where filtering is inevitable and can be efficiently realized
by simple electronic circuits.
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The green reed which bends in the wind
is stronger than the mighty oak
which breaks in a storm.

— Confucius

’[A]daptive’ behaviour is equivalent to the behaviour of a stable system

— W. Ross Ashby, Design for a Brain

5 Homeostatic plasticity

In the previous chapters, I presented networks and neurons as information processing “ma-
chines” and likened them to logic gates and other electronic components. But while logic
gates are fed a steady diet of ones and zeros, nervous systems are embedded in biological or-
ganisms, and they are bombarded by noisy input signals from an ever-changing environment,
perceived through sensors that themselves develop or degrade over time. To keep working
in this chaotic setting requires the organism to take active counter-measures to maintain
itself. This ability to adapt to changes is so critical for survival that early cyberneticists like
Ashby [2] saw the concept of homeostasis as the defining feature of life, and one of the main
differences that sets life (and nervous systems) apart from dead matter (and logic gates).
The term “homeostasis” entails that some attribute(s) of the organism are maintained at a
desirable state, and that the system can recover this state from small disturbances through
some self-regulating mechanism. In the case of the nervous system, that could mean to
remain functional (or to quickly regain functionality) even if certain aspects of the sensory
inputs change abruptly. The idea of homeostatic adaptation is therefore quite central in
theoretical and computational neuroscience, and it should play an important role for our
understanding of (artificial) intelligence as well. In fact, a survey of different definitions of
intelligence [143] found that at least 23 out of the 72 definitions see the ability to adjust or
adapt to the environment as a defining feature, and many of the others imply it!

But in most current deep learning research, adaptation plays only a minor role, and
most of the big data sets on which models are trained and evaluated have been explicitly
preprocessed to remove any of the systematic changes or drifts that would require the system
to adapt in the first place¹. Since self-regulating, adaptive systems are also typically harder 1 Many image recognition challenges,

for example, present a fixed set of
training images in randomized or-
der. Often, these images are color-
adjusted, scaled to equal size, centered
or otherwise prepared. It would be
considerably harder, if the training set
was allowed to change over time.

to understand, control and train than static ones, the homeostatic plasticity mechanisms
that we know from biological neurons are hence still largely absent from machine learning
models.

In this chapter, I’d like to illustrate why homeostatic adaptation is not just a biological ne-
cessity, but also a useful mechanism for neural information processing in general. I’ll present
an abstract framework that unifies two different forms of biological plasticity mechanisms to
solve a practical, easily interpretable machine learning problem. Most content of this chapter
is directly based on contribution 6, but it offers another, hopefully simpler motivation for the
main results, while leaving out a lot of the technicalities here. Nevertheless, this will take us
through a number of abstract mathematical concepts, and I will try my best to explain them
here on a rather high level.
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Contribution 6: A Unifying Framework of Synaptic and Intrinsic Plasticity
in Neural Populations

In this rather long paper, I explore the relationships and interaction of intrinsic and
synaptic plasticity for computation. The entire chapter 5 of my thesis is largely based
on ideas containedwithin this publication. I try tomotivate the samemain results here
using a slightly different approach that introduces concepts like optimal transport
theory. But for most content of the current chapter, a more in-depth discussion can
be found within this original publication.

Reference (see also appendix C, page 145ff for the full text):

J. Leugering and G. Pipa, “A Unifying Framework of Synaptic and Intrinsic Plasticity
in Neural Populations,” Neural Computation, vol. 30, no. 4, pp. 945–986, 17, 2018,
issn: 0899-7667. doi: 10.1162/neco_a_01057.

5.1 The Information Bottleneck Principle

The Information Bottleneck Principle [66, 144] loosely states that in neural networks, the
capacity to transmit information from neuron to neuron, or from layer to layer, or from
region to region, is often the limiting factor for computation — a bottleneck, so to speak. As
such, the capacity should be used providently, and neural computation should be optimized
to make efficient use of it. This provides a clear objective, towards which a neuron or network
can be optimized: to convey as much information as possible about the input signal through
an information channel with limited capacity. A popular and quite literal example of this
idea are auto-encoders [145] in deep learning, where a feed-forward network is supposed
to transmit its input signals without loss to its output layer, but with one important twist:
some intermediate layers of the network contain only few neurons and thus present an
information bottleneck. In order to reproduce the network’s input signal on its output, the
network layers leading up to this bottleneck must find a very low-dimensional, compressed
representation of the input (encoding), which the subsequent layer can then decode again.
This is illustrated in figure 5.1. By forcing the network to find such a low-dimensional latent
space representation of its input, we can make sure that the network picks up only on the
most informative features of its input — or so the story goes.
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Figure 5.1. An auto-encoder with a
narrow bottleneck in between the en-
coder and decoder layer(s).
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Figure 5.2. A single neuron acts as an
information bottleneck in between its
synaptic inputs and outputs.

As we already saw in chapter 4, the same principle can be also applied at a much smaller
level, the individual neuron, which needs to reduce its high-dimensional input signal from
thousands of incoming synaptic connections to the only one-dimensional output signal with
finite bandwidth ([146]; see figure 5.2). Particularly when metabolic constraints and noise
are considered, the capacity of individual neurons to transmit information is limited and a
loss of information becomes inevitable. If we apply the information bottleneck principle to
the single neuron, the neuron should be tuned to ensure that as much (relevant) information
as possible about its inputs is preserved in its output. Example 1 gives some intuition for
this idea.

5.2 Mutual information and maximum entropy

From an information theoretical perspective [7, 113, 147], the neuron represents a noisy
channel, and the information bottleneck problem is a matter of maximizing the mutual

http://dx.doi.org/10.1162/neco_a_01057
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Example 1: Gain modulation and the information bottleneck

Consider a linear-nonlinear neuron of the form 𝑓 (𝑥) = tanh(𝑠 ⋅ 𝑥) with a single free parameter, the slope 𝑠 = 𝑓 ′(0) at
the origin. We assume that the output signal 𝑌 = 𝑓 (𝑋) + 𝜂 produced by the neuron is corrupted by additive noise 𝜂. A
perfect recovery of the input signal 𝑋 from the corrupted output signal is 𝑌 impossible, so the neuron becomes a lossy,
non-linear noisy channel. How well this channel can transmit information depends on the choice of the gain 𝑠. To
illustrate this, let’s consider three different neurons, one with low, medium and high gain each (see the three insets
below, from left to right):
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Each neuron receives input with the same prior distribution 𝑋 ∼ 𝒩 (0, 1) (gray, above each inset), which results in
different output distributions 𝑃(𝑌 ) (gray, right of each inset). If we now observed the three output values 𝑦1 = 0.9,
𝑦2 = 0.0 and 𝑦3 = −0.9 (horizontal dashed lines), we can infer the conditional input probability distributions 𝑃(𝑋 |𝑦𝑖)
(shown above in corresponding colors). For a neuron with a low gain of 𝑠 ≈ 0.1, these conditional input distributions
are quite broad and uninformative. For a slope of 𝑠 ≈ 1, each of the three outputs encodes a distinct, narrower input
distribution. For a very steep slope 𝑠 ≈ 10, the observations 𝑦1 = 0.9 or 𝑦3 = −0.9 again reveal only little about 𝑋 —
mostly just whether it was positive or negative.
The red curve below quantifies this dependence of the neuron’s information transmission ℐ (𝑋; 𝑌 ) on the gain
parameter: As 𝑠 → 0, 𝑓 becomes constant, and the transmitted information content approaches 0 bits. In the other
extreme, when the nonlinearity approaches a step-function (𝑠 → ∞), the output distribution becomes sharply bimodal,
and conveys only the sign-bit of the input signal. For some intermediate optimal slope (𝑠 ≈ 1), however, the neuron’s
output yields a maximum of about 2.5 bits of information about its current input. Modulating the gain can therefore
help to mitigate the information bottleneck!
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information between the channel’s in- and output. This critically depends on the statistical
properties of the source signals to be transmitted and the noise affecting the channel, as well
as the parameters of the channel itself. If we think of the standard linear-nonlinear neuron
model with an invertible activation function, then we can express the mutual information as
follows:

𝐼 (𝑋 ; 𝑌 ) = 𝐼 ( ̄𝑌 ; 𝑌 ) = ℎ( ̄𝑌 ) − ℎ( ̄𝑌 |𝑌 ),

where 𝑋 is the neuron’s input (or membrane potential), ̄𝑌 = 𝑓 (𝑋) is its noiseless output, 𝑌 is
the noisy signal that is ultimately received by the next neuron, ℎ( ̄𝑌 ) is the differential entropy
of ̄𝑌 and ℎ( ̄𝑌 |𝑌 ) is the conditional differential entropy of ̄𝑌 given that 𝑌 has been observed, i.e.
the uncertainty of our decoding of ̄𝑌 from the noise-corrupted version 𝑌.

In the absence of noise, the channel’s capacity to transmit information is only limited by
the source entropy ℎ( ̄𝑌 ) — this is Shannon’s famed first theorem (source-coding theorem)[113,
147]. To maximize information transmission by a noiseless channel, we therefore need to
use an “encoding” ̄𝑌 = 𝑓 (𝑋) that results in a maximum entropy distribution of ̄𝑌.

Note: Subtleties of differential entropy

For the continuously valued case we are interested in, there is one extra caveat to
consider [147]: Since the differential entropy ℎ( ̄𝑌 ) can be arbitrarily increased by
just scaling ̄𝑌 (in fact, ℎ(𝛼 ⋅ 𝑌 ) = ℎ(𝑌 ) + log(|𝛼|)), the absolute value of the differential
entropy is typically meaningless, as it depends on the choice of units and scales of
the variables of interest. This is fundamentally different from discrete entropy, which
is invariant to any invertible transformation![147]. When we talk of maximizing
differential entropy ℎ( ̄𝑌 ), we therefore always include direct or indirect constraints
on the scale of the random variable and focus not on the absolute value of this
maximum, but only on the distribution that achieves it (this only requires comparing
differences of differential entropy, in which case the scale-dependent terms cancel.).

In practice, any physical channel is subject to noise that reduces its capacity, and the
neuron is of course no exception. This is the core of Shannon’s even more famous second
theorem (channel-coding theorem)[113, 147], which establishes the limit of how much infor-
mation can be transmitted through the channel in the presence of noise. This upper limit
can be increased by improving the signal-to-noise ratio, either by allocating more bandwidth
to the signal (e.g. scaling up firing rates) and/or by suppressing the noise (e.g. by filtering,
see also chapter 4).

Optimizing the encoding while simultaneously taking into account the statistical proper-
ties of the source signal and the characteristics of the channel is called joint source-channel-
coding and can be quite challenging. Luckily for us, the joint source-channel separation theorem
[147] suggests² that an optimal solution to this problem can be found by separately optimiz- 2 The theorem assumes discrete chan-

nels, and does not perfectly translate
to continuously valued signals [148].

ing the source encoding (which only depends on the distribution of source signals) followed
by a channel-specific encoding (which only depends on the characteristics of the channel).
In the following, we will therefore limit ourselves to the simpler problem of source-coding,
i.e. we’d like to find the distribution of neural outputs ̄𝑌 with the largest differential entropy
ℎ( ̄𝑌 ) under certain metabolic constraints imposed by the channel.

For biological spiking neurons, these constraints could be a finite maximum firing rate of
the neuron, an energy constraint on the mean firing rate, or even a constraint that depends
nonlinearly on the firing rate. For neuromorphic hardware, they could be finite supply
voltages or limits on the energy dissipation.
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To incorporate such metabolic constraints, we need to find the output distribution 𝑃∗ with
the largest entropy subject to a list of equations or inequalities of the form 𝐸𝑃(𝑦)[𝑔𝑖(𝑦)] = 𝑐𝑖 for
𝑖 ∈ 𝐼 and 𝐸𝑃(𝑦)[𝑔𝑖(𝑦)] ≥ 𝑐𝑗 for 𝑗 ∈ 𝐽.³ Finding such a measure 𝑃∗ might seem like a daunting 3 To ensure that the result is a valid

probability distribution, there is al-
ways one additional equality con-
straint 0 ∈ 𝐼 with 𝑔0 ≡ 1 on the do-
main of 𝑃 and 𝑐0 = 1.

task, but fortunately there is a beautiful solution to this very problem by Jaynes [149],
generalizing results attributed to Ludwig Boltzmann. It states that the optimal distribution
𝑃∗ is always from an exponential family with a probability density 𝑝∗ that can be expressed
directly in terms of the constraints:

𝑝∗(𝑦) = exp (∑
𝑖∈𝐼 ∩𝐽

𝜆∗𝑖 𝑔𝑖(𝑦))

where 𝜆∗ = argmax𝜆 (∑
𝑖∈𝐼 ∩𝐽

𝜆𝑖𝑐𝑖 −∫ exp (∑
𝑖

𝜆𝑖𝑔𝑖(𝑦)) 𝑑𝑦)

subject to ∀𝑗 ∈ 𝐽 ∶ 𝜆𝑗 ≥ 0

In contribution 6, we look at some examples of such maximum entropy distributions. The
fact that the resulting distributions are all from some exponential family has a lot of interesting
implications and comes in handy for the analysis. We will revisit this in chapter 6 and contrast
it to a different approach, which aims to maximize metabolic efficiency of information
transmission rather than maximizing information transmission under metabolic constraints.
Here, we will just continue with the knowledge that we can in principle derive the optimal
distribution of the output of a linear-nonlinear neuron under metabolic constraints according
to the information bottleneck principle, and that it takes the form of some exponential family
distribution.

5.3 Optimal Transport and the Monge Problem

We saw above how the neuron’s activation function shapes the neuron’s output distribu-
tion and thus its ability to transmit information. I then showed how metabolic constraints
determine the optimal output distribution. Putting these results together, finding an activa-
tion function that produces that desirable output distribution would improve information
transmission, and thus constitute a solution to the bottleneck problem. But what would
this activation function look like for different input distributions? And what is the best
approximation that a neuron could realize?

Again luckily for us, more general versions of this optimization problem, the Monge-
Kantorovich, Kantorovich-Rubinstein or Optimal Transport Problem [150], have been studied
extensively. It can be loosely paraphrased as the problem to find the ‘best’ deterministic trans-
formation to map one given probability density onto another given probability density. What
‘best’ means in this context is precisely defined by a cost function 𝑐(𝑥, 𝑦) ∶ 𝒳 ×𝒴 → [0, 1]
that penalizes the transport of probability mass from 𝑥 to 𝑦. In the historic setting, in which
this question was originally posed, 𝑐 quite literally referred to the cost of moving earth from
one spot 𝑥 to another spot 𝑦, which is also where the alternate name earth mover’s distance
originates from [150]. The original Monge problem can be expressed in terms of this cost
function as an optimization problem:

𝑓 ∗ = arginf𝑓#(𝜇)=𝜈 ∫ 𝑐(𝑥, 𝑓 (𝑥))𝑑𝜇(𝑥),

where 𝜇 and 𝜈 are the source and target the probability distribution, respectively, and 𝑓#(𝜇)
is the distribution onto which 𝜇 is mapped by 𝑓 (i.e. the push-forward measure of 𝜇 under
the function 𝑓).
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In our context, we would like the neuron’s activation function to deviate as little as
possible from a linear function (in part because this makes the decoding simpler), so we
choose 𝑐(𝑥, 𝑦) to penalize any deviation of 𝑦 = 𝑓 (𝑥) from 𝑥. The cost function is then some
radial function 𝑐(||𝑥 − 𝑦||) that only depends monotonically on the distance between 𝑥 and 𝑦
in some norm || ⋅ ||. Under generous assumptions, which our cost function satisfies, ⁴ it turns 4 Both 𝑝𝑋 and 𝑝𝑌 must be atom-free,

univariate, continuous probability dis-
tributions.

out that a unique optimum 𝑓 ∗ exists and has the following simple form — regardless of the
precise choice of 𝑐 [150, Remark 2.30]:

𝑓 ∗ = 𝐹−1𝑌 ∗ ∘ 𝐹𝑋,

where 𝐹𝑋 and 𝐹𝑌 ∗ are the cumulative probability distribution of 𝑋 and 𝑌 ∗, respectively.
Combining this result with the maximum entropy approach above, we therefore know the

optimal activation function 𝑓 ∗ that will maximize the neuron’s ability to transmit information
for a given input distribution! And since 𝑓 ∗ is defined purely in terms of the distributions
𝐹𝑋 and 𝐹𝑌 ∗ , any parameter of these distributions becomes a parameter of 𝑓 ∗. Conveniently
for us, the optimal function 𝑓 ∗ is also an acceptable candidate for an activation function
of a neuron, since it is monotonically increasing and continuous if 𝐹𝑋 is continuous and
𝐹𝑌 ∗ is injective. ⁵ In contribution 6, I derive the same solution, albeit from a very different 5 For every root 𝑝𝑌 ∗(𝑦) = 0, 𝑓 ∗ has a

discontinuity at 𝑥 ∈ 𝐹−1𝑋 ({𝑦}).perspective, and discuss in more detail the properties of this functional mapping; a related
derivation can also be found in [151].

Note: Kantorovich’s relaxation [150]

The existence of a deterministic one-to-one mapping 𝑓 ∗ as above is no longer guaran-
teed if we allow discontinuous probability distributions. But even if such a solution
exists, the activation function 𝑓 can become highly nonlinear. If we wish to avoid
that while also maintaining the desired output distribution, we can express the op-
timization problem in a more general form or relaxation proposed by Kantorovich
[150]. Rather than a deterministic one-to-one function 𝑓 ∗, it defines a probabilistic
mapping 𝛾∗ ∶ 𝒳 ×𝒴 → R+, where 𝛾∗(𝑥, 𝑦) is the relative amount of probability
mass to be transferred from 𝑥 to 𝑦:

𝛾∗ = arginf𝛾∈Γ(𝑝𝑋,𝑝𝑌) ∫ 𝑐(𝑥, 𝑦)𝑑𝛾 (𝑥, 𝑦)

Here Γ(𝑝𝑋, 𝑝𝑌) is the set of all joint probability densities with marginal distributions
𝑝𝑋 and 𝑝𝑌, respectively. Such a map always exists (consider for example the trivial
case 𝛾 (𝑥, 𝑦) = 𝑝𝑋(𝑥)𝑝𝑌(𝑦)), but the optimal map is not (necessarily) the graph of a
deterministic function from 𝑥 to 𝑦, i.e. such that 𝛾 (𝑥, 𝑦) = 𝛿(𝑥 − 𝑓 (𝑦)), as the stricter
Monge-problem would require. In this non-deterministic case, the same input 𝑥
is instead “distributed” probabilistically over possible outputs 𝑦 with distribution
𝑝𝑦|𝑥 = 𝛾(𝑥, 𝑦). This means that in order to enforce a desired output distribution, we
could also include randomness into the neuron model itself and control it in an input
dependent way. But whether this is useful or not is a separate topic I will not discuss
here.

Let me summarize these results: in order to be an efficient information channel, a neuron
should tune its activation function 𝑓 to map its input 𝑋 ∼ 𝑃𝑋 to an output 𝑌 ∗ = 𝑓 (𝑋)
with maximum entropy distribution 𝑌 ∗ ∼ 𝑃∗. The optimal way to achieve that is to set
𝑓 ← 𝑓 ∗ = 𝐹−1𝑌 ∗ ∘ 𝐹𝑋. This is also extremely useful if we are interested in optimizing spike-
based information transmission, which we will return to in chapter 6.
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5.4 Intrinsic homeostatic plasticity

These derivations all describe the mapping of a single random variable, 𝑋, onto a single
random variably 𝑌 by the neuron’s activation function 𝑓, but a real neuron is faced with a
continuously varying input signal 𝑋(𝑡) which must be expressed as a stochastic process. ⁶ 6 I only look at drift-diffusion processes,

which have a stationary distribution
from some exponential family [152].

And what if the probability distribution of 𝑋(𝑡) were to suddenly change? In order to achieve
andmaintain the optimal output distribution, we’d expect the neuron to adjust to any changes
in its input distribution by homeostatically regulating its nonlinear activation function in real
time. This finally brings us to the main topic of this chapter, intrinsic homeostatic plasticity.

If we take for granted that a neuron can approximate the information-theoretically optimal
input-output mapping in principle, the challenge for homeostatic plasticity is to keep the
mapping optimal, i.e. to constantly adjust the coefficients of the activation function to changes
in the environment that affect the input distribution. However, since the current probability
distribution over input values is determined by external factors, it must be constantly inferred
by the neuron from the recent history of its own input signals. In order to do this with a finite
number of variables, the input distribution has to be approximated by some parameterized
family of distributions, the time-varying parameters of which have to be estimated online,
e.g. by the concentrations of some chemicals or voltage traces.

In contribution 6, I model the neuron’s fast-changing membrane potential 𝑋(𝑡) by a
continuous stochastic process with a given stationary probability distribution from some
exponential family, e.g. a Gaussian. Changes due to environmental factors are assumed to
occur sporadically on a much slower time-scale, which I model as sudden changes in the
stationary distribution of the process. I show that despite the much more complicated math-
ematics involved with stochastic processes, the intuitions derived above for the probability
distributions of in- and output can in fact be applied directly to the stationary distribution
of the stochastic in- and output processes. Thus, by transforming the stochastic process
that describes the neuron’s membrane potential through some nonlinear function 𝑓, we can
produce a stochastic process with any desired stationary distribution as the neuron’s output,
including the maximum entropy distribution that solves the information bottleneck problem.

By assuming a parameterized family of both the stationary input and output distributions,
the optimal activation function also becomes parameterized. Since we are working with a
stationary membrane potential distribution from an exponential family, these parameters
are determined by the distribution’s so-called sufficient statistics.

These sufficient statistics all take the form of an expected value of some nonlinear func-
tion of the process, which we can therefore estimate by filtering, e.g. with an exponentially
weighted continuously running average. ⁷ I prove in contribution 6 that as the running 7 If themean value itself is one of these

sufficient statistic (as e.g. for the Gaus-
sian distribution), the estimation and
homeostatic regulation of that param-
eter could be realized entirely by den-
dritic filtering, as discussed in chap-
ter 4.

estimates of the sufficient statistics approach the true values⁸, the realized output distribution

8 They do this in an unbiased way,
but with some residual uncertainty
that depends on the estimator’s time-
constant. The longer the time con-
stant is, the better the approximation
becomes at the cost of a longer la-
tency.

also approaches the desired output distribution. Since the filtering of the sufficient statistics
constitutes a form of running average, the neuron will thus quickly recover from a perturba-
tion to its input distribution! Example 2 illustrates this mechanism for the simple example of
Gaussian inputs. While this description has focused on continuous linear-nonlinear models,
the same arguments can be extended to spiking neurons, which are known to adapt to their
input distributions, e.g. by regulating the spike-threshold [153]. Stabilizing a neuron’s output
by adjusting to the statistical properties of its input can also promote sparsity and might
help explain the emergence of complex cell receptive fields in visual cortex [154]. This form
of dynamic re-scaling has been directly observed in biological neurons in vision [155, 156],
olfaction [157], audition [121], and might play an important role for neural information
processing, in general [6].



52 chapter 5. homeostatic plasticity

Example 2: A homeostatic neuron for Gaussian inputs

With the popular choice of an Ornstein-Uhlenbeck process [152] as a model of the
membrane potential𝑋, the stationary distribution is Gaussian with sufficient statistics
𝑠1 = E[𝑋] and 𝑠2 = E[𝑋 2]. Two internal state variables 𝜒1 and 𝜒2 provide a running
estimate of 𝑠1 and 𝑠2, respectively. In order to produce an output with cumulative
distribution function 𝐹𝑌, the neuron nonlinearly transforms its membrane potential
through the function 𝑓.

A homeostatic neuron

+

×
𝑤1

×
𝑤2

⋮

𝛼
𝑠+𝛼

𝑥(𝑡)

𝛽
𝑠+𝛽

𝜒1

𝛽
𝑠+𝛽

𝜒2

𝑠1(𝑡)

𝑠2(𝑡) 𝑦(𝑡)

The traces 𝜒1 and 𝜒2 are used to parameterize the activation function

𝑓 (𝑥) ≔ 𝐹−1𝑌 (𝐹𝑋(𝑥)) ≈ 𝐹−1𝑌 (1 + erf(
𝑥 − 𝜒1

√2 (𝜒2 − 𝜒2
1 )

))

The neuron operates on two time-scales defined by the fast time-constant 𝛼 of the
membrane potential dynamics, and the slower time-constant 𝛽 of the adaptation
process. Any shift in mean or variance of the input distribution is counteracted by the
neuron on the slower timescale — the neuron exhibits homeostatic self-regulation.

5.5 The complex interactions of synaptic and intrinsic plasticity

Of course, intrinsic plasticity mechanisms that adjust the neuron’s response are not the only
form of neural plasticity. The most critical mechanisms for learning appear to be structural
and synaptic plasticity [158], which lead to the (dis-)appearance of synaptic connections (or
dendritic spines) and an adjustment of the synaptic efficacy, respectively. Each of these forms
of plasticity, intrinsic to the neuron or occurring within each synapse, only have access to
different information and can thus influence the behavior of neurons in different ways.

Each synapse can, in principle, modulate its transmission strength (or transmission
probability) based on the activity of the two neurons it connects, while each neuron, through
intrinsic plasticity, can only adjust its nonlinearity based on the neuron’s membrane potential.
To see where a combination of both rules leads, we investigate the dynamics of a neuron’s
membrane potential and its synaptic weights under the effect of both intrinsic and synaptic
plasticity in contribution 6.

5.5.1 Principal Component Analysis

Consider as an example a neuron with two synaptic inputs, which evolve according to a

(non-linear) Hebbian rule with weight decay of the form 1
𝜂
d𝑤𝑗,𝑖(𝑡)

d𝑡 = 𝑓 (𝑦𝑖(𝑡))𝑔(𝑦𝑗(𝑡)) − 𝑤𝑗,𝑖(𝑡),
where 𝑓 and 𝑔 are increasing functions, 𝑤𝑗,𝑖 is the weight of the synapse connecting neuron 𝑖



5.5 . the complex interactions of synaptic and intrinsic plasticity 53

to 𝑗 and 𝑦𝑖, 𝑦𝑗 are the corresponding neurons’ activations. In this model, if the outputs of the
pre- and post-synaptic neurons stayed constant, the weight 𝑤𝑗,𝑖 would approach the expected
value E[𝑓 (𝑦𝑖(𝑡))𝑔(𝑦𝑗(𝑡))] over time. But there is in fact a positive feedback-loop, since an
increase in the synaptic weight leads to an increase in the post-synaptic activation, which
in turn leads to a further increase of the synaptic weight, and so on. This could potentially
lead to unstable runaway dynamics, where the weights all either converge to 0 or diverge
to ±∞. Stable variations of this rule exist for that reason, such as the popular BCM rule
[159], which includes a term that adjusts for the neuron’s mean activity. Instead, I use the
homeostatic intrinsic plasticity of the post-synaptic neuron to the same end, i.e. to maintain
a fixed distribution of the neuron’s output.

Note: Beyond linear Hebbian learning

The most commonly used synaptic learning rules are (bi-)linear Hebbian learning
rules, where the rate of change of the weights is a product of a linear function
of pre- and post-synaptic activation. But non-linear dependencies on the pre- and
post-synaptic activations are of course conceivable, as well! Such non-linear Heb-
bian learning rules make it possible to further decouple the effects of synaptic and
intrinsic plasticity, e.g. choosing an activation function purely to maximize infor-
mation transmission in combination with a learning rule to realize principal or
independent component analysis. Non-linear Hebbian learning rules therefore open
countless more opportunities for synaptic learning rules that could be studied in this
framework.

So what happens when we drive an assembly of multiple neurons with a multi-variate
stationary input process, and let the synaptic connections and intrinsic parameters evolve
according to these synaptic and intrinsic plasticity rules? As we show analytically in con-
tribution 6, without any stabilizing homeostatic plasticity, the weights do in fact diverge.
But under the effect of intrinsic plasticity, the weights follow a gradient field and settle in
stable fixed-points. For multi-variate Gaussian inputs, these fixed-points correspond exactly
to the principal component directions. More accurately, the linear Hebbian synaptic learning
rule finds a projection of the multi-dimensional input space onto the one-dimensional mem-
brane potential, for which the expected activation of the post-synaptic neuron is maximized,
whereas intrinsic plasticity normalizes its expected activation.

As the input distribution (and thus its principal component directions) changes, the weight
vector re-aligns itself and thus counteracts this transformation, thereby realizing a special
form of homeostasis.

5.5.2 Independent component analysis

In the previous section, the combination of intrinsic and synaptic plasticity lead to the
discovery of principal components, because for that choice of input distribution and activation
function, the variance of the input had the largest effect on the expected output of the neuron.
But what if we were to choose a different input distribution than Gaussian, where higher-
order moments carry important information?

Due to the nonlinear activation function, the expected value of the neuron’s output
also depends on the higher-order moments of its membrane potential (see the appendix of
contribution 6). For example, with a monomial activation function 𝑓 (𝑥) = 𝑥𝑛, the neuron’s
mean output measures the 𝑛-th moment of the input distribution. With 𝑛 = 2, such a neuron
would be sensitive to the variance of the input, and to the curtosis for 𝑛 = 3. In general,
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it depends on the Taylor expansion of the activation function, how much each moment
of the input distribution influences the neuron’s mean output. If we choose a different
activation function or input distribution, the neuron can therefore discover other subspaces
that maximize higher-order moments of the input distribution, instead. This can be used
to disentangle signals that are uncorrelated, but not independent, because they do share
higher-order correlations. In analogy to principal component analysis, this procedure is
therefore called independent component analysis (ICA). ⁹ Our combination of intrinsic and 9 The original work by [160] intro-

duced independent component analy-
sis using a similar, neuro-inspired mo-
tivation with the activation function
𝑓 (𝑥) = 𝑥3 to maximize curtosis.

synaptic plasticity mechanisms produces either principal or independent component analysis
or a mixture thereof, depending on the input distributions and/or activation function!

5.6 Applying the information bottleneck to neural assemblies

We can generalize these ideas from individual neurons to neural assemblies: By selecting and
scaling the inputs into the neurons, synaptic plasticity determines how the neurons’ inputs
are related to each other, whereas intrinsic plasticity independently controls the marginal
distribution of each individual neuron’s outputs.

This raises an interesting question: how much control over its joint output distribution
could an assembly of neurons theoretically exert, if the only free parameters are each neuron’s
nonlinearity and the incoming synaptic connections? Can an assembly of neurons map an
arbitrary multi-variate input distribution onto an arbitrary multi-variate output distribution?
The general answer is no¹⁰, but to make this more precise, we have to disentangle the effects 10 Consider e.g. that a uni-variate in-

put signal cannot be transformed into
multiple independent output signals.

of synaptic and intrinsic plasticity. In contribution 6, we do this by introducing a concept
from probability theory called copula ([161], see also the note below).

Note: Copulas describe the coupling of random variables

For an assembly of 𝑁 neurons with individual inputs 𝑋𝑖 ∼ 𝑃𝑋𝑖 with joint distribution
𝑃𝑋 and outputs 𝑌𝑖 ∼ 𝑃𝑌𝑖 , we define the intermediate random variables 𝑈𝑖 = 𝐹𝑋𝑖(𝑋𝑖),
called the ranks or quantiles of 𝑋𝑖, each of which is marginally uniformly distributed.
The joint distributions of these rank-variables is the copula

𝐶(𝑢) ≔ 𝐹𝑋(𝐹−1𝑋1
(𝑢1), 𝐹−1𝑋2

(𝑢2), … , 𝐹−1𝑋𝑁
(𝑢𝑁)),

a probability distribution in the 𝑁-dimensional unit cube, that captures how the ran-
dom variables 𝑋𝑖 are related — regardless of their marginal distributions! A common
application of this rank-transformation in statistics is when random variables need
to be compared across different scales. In that case, the correlation between the ranks
of the variables can be used, which is just the correlation of the copula. The copula
has many more interesting theoretical properties, e.g. [162], but most importantly for
us, it is invariant under any invertible univariate transformations of the individual
random variables 𝑋𝑖. Therefore, the copula 𝐶 of the assembly’s multi-variate input
and its multi-variate output distribution coincide and we can just talk of the copula
of the assembly. The copula is only a property of the synaptic connections and the
input distribution, and unaffected by the neuron’s nonlinearity.

Using the copula 𝐶, we can factorize the stationary joint probability distributions of the
membrane potentials 𝑋 and activations 𝑌 = 𝑓 ∗(𝑋) as follows:

𝐹𝑋(𝑥) = 𝐶(𝐹𝑋1(𝑥1), 𝐹𝑋2(𝑥2), … , 𝐹𝑋𝑁(𝑥𝑁))

𝐹𝑌(𝑥) = 𝐶(𝐹𝑌1(𝑦1), 𝐹𝑌2(𝑦2), … , 𝐹𝑌𝑁(𝑦𝑁))
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The last factorization specifies the population’s joint output distribution in terms of the
desired individual marginal distributions 𝐹𝑌𝑖 of each neuron’s output, which can be enforced
by intrinsic plasticity, and the copula function 𝐶, which captures the co-dependency between
the neurons’ activity. The copula is invariant under element-wise invertible transformations,
and therefore only depends on the synaptic connections — not the activation function.
In other words: No matter what activation functions we choose, we can only modify the
marginal distributions of each neuron’s output —but not the assembly’s copula— through
intrinsic plasticity! Synaptic plasticity, on the other hand, can shape how different signals
are combined by the individual neurons, and thus it can influence the assembly’s copula, but
not the activation function.

In general, 𝐶 can be arbitrarily complex, and there is little hope that it can be fully
controlled by setting the synaptic weights alone. ¹¹ For copulas that are parameterized by 11 Of course, it may still be possible to

control the copula through synaptic
weights by using multiple layers of
neurons, as is done e.g. for so-called
normalizing flows [163].

more than one parameter per synapse, for example, synaptic plasticity alone is obviously
insufficient to fully control the copula. But e.g. for jointly Gaussian inputs, the distribution is
fully parameterized by the covariance matrix (and the mean), which can be shaped arbitrarily
by an appropriate choice of synaptic weights (and intrinsic plasticity).

If we apply the information bottleneck argument now to an entire assembly of multiple
neurons, the neurons should jointly maximize information transmission. This can be achieved
if the neurons’ outputs are i.i.d. with a marginal maximum entropy distribution.

It therefore seems reasonable from an information bottleneck perspective, that the indi-
vidual neurons should encode different independent (or principal) components. One way to
ensure this is mutual decorrelation of the neurons within an assembly by lateral inhibition
in order to enforce the learning of different weights. We demonstrate that this leads to the
unsupervised clustering of the MNIST handwritten digits dataset by the extraction of inde-
pendent components. For a second control dataset composed of random image patches no
such independent components should exist, and indeed the same setup leads to the discovery
of the dominant principal components instead. The same idea, sometimes called blind source
separation, can be generalized to other types of input signals as well, in particular to separate
heavy-tailed¹² source signals (see also example 3). 12 I use this term to refer to random

variables with larger higher-order mo-
ments than a normally distributed
variables with equal variance.

There is plenty of biological evidence to prove that such a decorrelation of signals by
PCA/ICA also occurs in nature. For example, this can be observed on a very low level of
the mammalian visual system (see [7, chapter 5] for a great summary of this topic). There,
colors are sensed by receptors tuned to different (but overlapping) spectra of visual light, but
the signals that are transmitted by ganglion cells appear to be linear combinations of these
“raw signals”: instead of a ‘red’, a ‘green’ and a ‘blue’ channel, the spike-trains transmitted
over the optic nerve seem to represent a ‘blue-(red+green)’ difference, a ‘red+green’ sum
and a ‘red-green’ difference channel! This representation decorrelates the highly correlated
responses of the individual color channels, and results in a more information theoretically and
metabolically efficient code. Just as in our hypothetical example, this requires an appropriate
rotation of the synaptic weight vectors and an appropriate scaling of the neuron’s nonlinear
activation function, although that may be genetically predetermined, rather than learned, in
this specific case. A similar observation can be made in the olfactory bulb of zebrafish larvae
[164], where appropriate lateral inhibition decorrelates the neurons’ responses.

5.7 Plasticity is information processing

In the field of machine learning, we think of neural networks in terms of a training phase,
where the network is optimized, and an inference phase, where the trained network is used to
process information. As I tried to show in this rather long chapter, this perspective completely
misses the important role that plasticity mechanisms play in information processing, in
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Example 3: Blind-source separation with synaptic- & intrinsic plasticity

Suppose we want to “de-mix” two independent source signals 𝑠1(𝑡) and 𝑠2(𝑡) from two different mixtures 𝑖1(𝑡) and
𝑖2(𝑡). This could be two independent sound sources that reach our two ears with different attenuation, or it could
merely be two correlated outputs of neurons in a previous layer — in either case, the mixture coefficients 𝑚𝑖,𝑗 are not
explicitly known. These two input signals are then transmitted through synaptic connections with weights 𝑤𝑖,𝑗 to
the two neurons, where they are integrated into the membrane potential 𝑥1(𝑡) or 𝑥2(𝑡), respectively (we ignore the
temporal filtering of the membrane potential here). Each neuron 𝑖 then applies its activation function 𝑓𝑖 to produce
the output 𝑦𝑖(𝑡). We’d like each neuron to reproduce a nonlinear function exp(𝑠𝑖(𝑡)) of just one of the input signals.
This is called blind-source separation or independent component analysis.

unknown
mixing

synaptic
plasticity

intrinsic
plasticity

𝑓1 = 𝐹−1𝑌1 ∘ 𝐹𝑋1

𝑓2 = 𝐹−1𝑌2 ∘ 𝐹𝑋2

𝑠1(𝑡) 𝑖1(𝑡) 𝑥1(𝑡) 𝑢1(𝑡) 𝑦1(𝑡)

𝑠2(𝑡) 𝑖2(𝑡) 𝑥2(𝑡) 𝑢2(𝑡) 𝑦2(𝑡)

×𝑚1,1
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2,1
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2,1
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𝐹𝑋1
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𝑦𝑖(𝑡) = (𝐹−1𝑌𝑖 ∘ 𝐹𝑋𝑖)(𝑤𝑖
𝑇𝑀𝑠(𝑡)) ≈ exp (𝑠𝑖(𝑡))

The interaction of synaptic plasticity and intrinsic plasticity can solve this problem in an unsupervised manner. To
ensure that 𝑓𝑖(𝑥) = (𝐹−1𝑌𝑖 ∘ 𝐹𝑋𝑖)(𝑥) = exp(𝑥), we assume 𝑋𝑖 has a probability distribution from the same family as
𝑆𝑖, and set 𝑃𝑌𝑖 = exp#(𝑃𝑆𝑖). The greedy mechanism of synaptic plasticity then finds a weight matrix 𝑊 that inverts
the unknown mixing matrix 𝑀, while intrinsic plasticity stabilizes this process and ensures that the outputs have
the desired distributions 𝐹𝑌𝑖 . The intermediate variable 𝑈 (𝑡) = (𝑢1(𝑡) 𝑢2(𝑡))𝑇 is marginally uniform, and its joint
distribution is the copula of 𝑋1 and 𝑋2 or 𝑌1 and 𝑌2, respectively.

particular if we consider the dynamics of online learning that has to happen in real-time, such
as homeostatic intrinsic plasticity and synaptic plasticity. Since the interaction of intrinsic
and synaptic plasticity can help not just to stabilize the behavior of neurons and networks,
but also to extract, compress and track relevant information like principal or independent
components in high-dimensional signals, I’d consider them to be information processing
mechanisms in and of themselves. While the high-level discussion above was focused on
continuous linear-nonlinear neuron models, we will apply these concepts to spiking neurons,
as well, in chapter 6.
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Yeah, but your scientists were so preoccupied over whether or not they could that they
didn’t stop to think if they should.

Dr. Ian Malcolm in Jurassic Park

6 Rate-coding with spiking neurons

The neuron models we looked at so far all use real-valued, continuous output signals as a
proxy of the neuron’s current firing rate. But — electric gap-junctions aside — biological
neurons in the human brain communicate via chemical synapses that actually have to
generate individual spikes to communicate. This mode of communication has been known
for almost two centuries [165], but to this day it plays only a minor role in machine learning
models of neural networks. Why is it, that biological neurons send spikes, rather than
continuous signals? And why haven’t we seen more applications of spiking neural networks
in machine learning?

There are two fundamentally different schools of thought on this issue. The rate-coding
paradigm assumes, that the only relevant information conveyed by a spike-train is the
time-varying rate at which the spikes are generated, while the spike-(time-)coding paradigm
treats each individual spike as a symbol, the timings of which convey individual pieces
of information. Unsurprisingly, how and how well a neuron can represent its input and
whether rate-coding is a viable model for that, has been one of the oldest research questions
in theoretical neuroscience [166], and has been revisited many times (see e.g. [167, 168]).
Surprisingly, there is still a lack of conclusive biological evidence one way or another and
the distinction between the two is not always clearly cut [169], so this apparently simple
question hasn’t been settled even after decades of intense debate. To better understand what
rate-coding entails, I will therefore stick to an entirely theoretical view of rate-coding in
the spirit of [166], and analyze its capacity to encode and transmit information for two of
the most common neuron models. In chapter 7, I will then try to account for more recent
biological evidence, which will lead us to spike-time coding, or rather event-coding.

6.1 Why do (only) biological neurons spike?

For proponents of rate-coding, the additional complexity of spike-based communication can
be understood as a biological “implementation detail” of sorts: Pulse-based communication
offers a noise-robust and energy-efficient means to approximately convey a continuous,
real-valued signal (the firing rate) under metabolic constraints over what is essentially a
binary channel (the neuron’s axon with its chemical synapses). The continuous signal is
then represented by the rate or density of the pulses per unit time-interval. This form of
encoding is simple to implement and very reliable, which is why variations of this scheme
are also used in digital electronics to transmit inherently analog signals (e.g. audio signals or
servo-motor controls) over a digital connection. ¹

1 In electronics, there is in fact a
corresponding pulse-based encoding
scheme for each of the spike-based
communication paradigms (see also
[3, chapter 3]): pulse-density modula-
tion (PDM) and its variants, which go
by the names pulse-frequency modu-
lation (PFM) and pulse-code modula-
tion (PCM) correspond to rate coding.
Pulse-position modulation (PPM) cor-
responds to spike-time coding, which
we will discuss in chapter 7. Asyn-
chronous ΔΣ modulation is directly
related to integrate-and-fire neurons
and time-encoding-machines [107].
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Spike-based communication also shares another benefit with digital electronics: While
analog signals strongly attenuate as they propagate along the neural membrane (see also
chapter 4), binary spikes can be detected over long distances and regenerated to their full
amplitude by error-correcting mechanisms. In cortical neurons, this happens at distinct
locations along the axon called Ranvier nodes [6], ² which are separated by highly myelinated 2 Again, there is a rich analogy toman-

made electrical communication sys-
tems: while the strong attenuation of
analog signals along wires originally
made the transmission of analog sig-
nals (such as the telephone) over large
distances difficult, the digital nature
of the telegraph allowed for a regen-
eration of the signal at periodically
spaced relay stations, much alike Ran-
vier nodes, and thus enabled fast long
range communication. A nice account
of this development can be found in
[113].

(i.e. electrically insulated) stretches of the axon. This insulation not only reduces leakage
but also greatly increases conduction velocity. The resulting saltatory propagation of action
potentials allows for an extremely fast, reliable and energy efficient communication over
long distances without degradation, which is critical for coordinating motor activity in limbs
far away from cortex [7, 139] and plays a crucial role in the consolidation of memory [139].

In short, from the rate-coding perspective, spike-based communication is a very useful
adjustment to bio-physical constraints. But as long as a spiking neuron’s firing rate can be
well approximated by a nonlinear function of its input, the precise mode of communication
makes little conceptual difference; the overarching framework is still function approxi-
mation by linear-nonlinear neurons, and spiking neurons are merely a hardware-efficient
implementation (or approximation) thereof. In fact, as we shall see below, there is a direct
correspondence between continuous linear-nonlinear neurons and simple spiking neuron
models that makes it trivial to convert back-and-forth (as long as we are only concerned
with mean firing rates).

6.2 Encoding continuous signals into rate-coded spike-trains

For the rate-coding paradigm, any benefit of spiking neurons has to come not from increased
computational power, but rather from an increased metabolic efficiency, i.e. the amount of
information transmitted per Joule of energy spent. To discuss the capabilities and limitations
of rate-coding, it’s therefore important to understand how and how well time-varying signals
can be encoded into a series of spikes, in the first place.

Since a neuron will have to be able to decode the relevant signal again from the spike train,
typical requirements for spike-based codes are as follows: The current firing rate of a neuron
is only a function of its recent input ³ ; a neuron’s response is time-equivariant, i.e. a temporal 3 Adaptation effects as in chapter 5 are

sometimes included as well, but on a
much slower timescale.

shift in the input results in a corresponding shift in the output; each spike is represented by
a brief stereotypical pulse with identical mass⁴; and despite the non-linear encoding, a linear 4 Typically, a Dirac 𝛿(𝑡) is chosen

for continuous time and a Kronecker
𝛿𝑡/rectangular pulse for discrete-time
models.

decoder, i.e. a filter, must be sufficient to decode the continuous rate from the spiking signal⁵.

5 This requirement is the first principle
of the neural engineering framework
[5]; see also chapter 2.

This linear ‘decodability’ imposes a hard constraint on the sort of spike-patterns that can
be used to convey information, but there is biological evidence to support this simplifying
assumption⁶. Since the spike-encoding mechanism might induce filtering effects that are

6 Pairwise correlations between
spikes (which can be assessed with
a linear filter) carry most of the
information content in individual
neurons’ spike-trains [170].

irreversible, as we have seen in chapter 4, we will be satisfied if we can encode a signal 𝑠(𝑡)
into a spike-train 𝑧(𝑡) and are then able to recover (𝜅 ∗ 𝑧)(𝑡) = 𝑓 ((𝜓 ∗ 𝑠)(𝑡)) for some kernel
𝜓 and some invertible function 𝑓 from the spike-train by the linear decoder with kernel 𝜅.
These constraints still leave room for many different mechanisms to encode a continuous
signal into a discrete sequence of spikes, but I will only consider three particularly interesting
types of rate-based encodings.

Since each spike requires energy to generate and transmit, we can compare these different
approaches by the number of spikes they tend to generate, and how well we can decode the
underlying continuous signal from the spike-train.

6.2.1 Periodic sampling and digital transmission

To put the encoding capabilities of spiking neurons into perspective, let’s compare them
to a well-known reference: digital encoding schemes. In the signal processing domain,
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Figure 6.1. The same input signal (top
row, solid red) is encoded by a 4-bit
digital code (left column), an LIF neu-
ron (middle column) and an LNP neu-
ron (right column) over a 10s interval.
The LIF neuron produces spikes at (al-
most) even increments of the signal’s
integral, while the LNP neuron fires at
uniformly distributed signal integrals
(second row). The digital code results
in a parsimonious representation that
here requires only 33 active bits. The
LIF neuron requires 46 spikes for a
slightly worse reconstruction (bottom
row, black line) of the filtered input sig-
nal (orange line), while the LNP neu-
ron gives a bad approximation even
for 108 spikes.

continuous real-valued signals are typically measured at periodic time-intervals, which
produces a discrete sequence of real-valued samples. According to the Nyquist-Shannon
sampling theorem [113], any bandwidth-limited signal can be losslessly represented this way
if the sampling rate is sufficiently high. Each real-valued sample can then be approximated by
𝑛-bit binary number, and the active bits can be transmitted as brief pulses via 𝑛 parallel wires.
If we scaled each of these pulses (or bits) by the corresponding power of two, summed and
filtered them appropriately, ⁷ we’d recover the continuous signal. While this binary encoding

7 The optimal kernel, a sinc function
scaled and stretched according to the
sampling frequency, is acausal, but an
approximate solution can also be ob-
tained with a causal kernel. See also
chapter 4.

would hence (with a little stretch of the imagination) satisfy our requirements of a rate-based
encoding, it is of course not actually a viable model of neural spike-based communication.
But it does provide a theoretically optimal reference implementation for the pulse-based
transmission of bandwidth-limited continuous signals, against which we can measure the
performance of other, more plausible rate-coding schemes.

6.2.2 Rate-coding with (leaky-)integrate-and-fire neurons

Biological neurons generate spikes through a cascade of opening and closing ion channels,
which modulate in- and outgoing ion currents that in turn drive the neural membrane
potential. This complex biological mechanism is described by the famed Hodgkin-Huxley
model [50], but much simpler models suffice if we are only interested in capturing the
encoding of continuous signals into spikes. The simplest of these is the ubiquitous integrate-
and-fire model [3, 171, 172], which operates by integrating the input signal up to a critical
threshold, where it resets and fires a spike.
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This can be theoretically “justified” as follows: For a continuous signal 𝑠(𝑡), the firing rate
of the neuron should encode the signal in a way that can be linearly decoded by filtering
(see also chapters 2 and 5). Therefore, the firing rate ought to be proportional to 𝑠(𝑡), i.e. the
average number of spikes in an interval [𝑡1, 𝑡2] should be proportional to ∫𝑡2𝑡1 𝑠(𝑡)d𝑡.⁸ For the 8 The average number of spikes in

a small interval [𝑡 − Δ𝑡/2, 𝑡 + Δ𝑡/2] of
length Δ𝑡 should be approximately
proportional to 𝑠(𝑡) ⋅ Δ𝑡. Partitioning
the interval [𝑡1, 𝑡2] into strips of width
Δ𝑡 and calculating the Riemann sum
for Δ𝑡 → 0 gives this result.

neuron to fire exactly one more spike, the average time-interval between the previous spike
at time 𝑡1 and the new spike at time 𝑡2 should therefore be 𝑐 ∫𝑡2𝑡1 𝑠(𝑡)d𝑡 = 1 ⇔ 𝑆(𝑡2) = 𝑆(𝑡1) + 1/𝑐,

where 𝑆(𝑡) = ∫𝑡−∞ 𝑠(𝜏 )d𝜏 and 𝑐 is a constant of proportionality. In other words, the neuron
should fire a spike whenever 𝑆(𝑡), the integral of the signal 𝑠(𝑡), increases by more than the
threshold 𝜃 = 1/𝑐 over its value at the previous spike. Of course, this is exactly the mechanism
implemented by the standard integrate-and-fire neuron, which integrates its input 𝑠(𝑡) up to
the critical threshold 𝜃, where the opening of voltage-gated channels resets the neuron back
to its resting potential (here chosen as 0 for the sake of simplicity), and the process begins
anew. Such an encoding is also called a send-on-delta scheme, as a spike is emitted whenever
there is a significant change (“delta”) in the (integral) of the signal.

This allows us to say something about the timing of the spikes in relation to the signal:
If we assume a positive input signal 𝑠, then 𝑆(𝑡) is a monotonically increasing (and hence
invertible) function. Whenever 𝑆(𝑡) = 𝑆(𝑡𝑖) + 1/𝑐, a new spike 𝑡𝑖+1 is generated, therefore the
spike times 𝑡𝑘 satisfy 𝑆(𝑡𝑘) = 𝑘𝜃 and thus 𝑡𝑘 = 𝑆−1(𝑘𝜃). This spike-train is linearly decodable
by construction, and we can easily verify that this also meets our other requirements of a
rate-code, since a delay in 𝑠 leads to an equal delay in 𝑆 and thus in 𝑡𝑘.

The ideal integral operator in this construction would require the membrane potential to
remain constant in the absence of external inputs. Not only do inevitable leakage currents
make this implausible for both biology and neuromorphic hardware, but it also has the
undesirable theoretical implication, that the output of the neuron depends on a potentially
infinitely long history of inputs. ⁹ To remedy this, the integral operator, whose impulse 9 This would e.g. violate the fading-

memory assumption of reservoir com-
puting [30].

response is a step-function, is often replaced by a low-pass filter with an exponentially
decaying impulse response. This results in the more biologically plausible and very popular
leaky integrate-and-fire (LIF) neuron [3]. If the time-scale of the exponential filter is very
short, it approaches a Dirac-𝛿 kernel and the neuron acts like a coincidence detector of nearly
simultaneous spikes, to which we will return in chapter 7. For a very long time-scale, on the
other hand, the exponential filter approaches a step-function and the model converges to the
pure integrate-and-fire neuron. As theoretical considerations and biological observations
show (see e.g. chapter 3 of [7]), the optimal trade off between these two extremes in terms of
metabolic efficiency (i.e. how many bits are transmitted per Joule spent) seems to be achieved
when the filter’s time-scale roughly equals the expected inter-spike interval. Other filters
than the exponential could be used as well (see also the node below), but will not be further
discussed here.

encoding neuron decoding neuron

+ 𝛼
𝑠+𝛼

𝑠(𝑡)
reset−𝜃

×
𝜃

𝛼
𝑠+𝛼

𝑧(𝑡)𝑦(𝑡)

Figure 6.2. Two simple leaky
integrate-and-fire neurons as used
in figure 6.1, one of which receives
a time-varying continuous signal
𝑠(𝑡) as its input and encodes it
into a spike-train 𝑦(𝑡). The second
neuron decodes the spike-train into
piece-wise continuous membrane
potential trace 𝑧(𝑡). Both use the
same exponential kernel 𝜅𝛼 = 𝛼

𝑠+𝛼
with rate 𝛼.

Let’s consider the example shown in figure 6.2 of a pair of LIF neurons with the dendritic
filter 𝜅𝛼(𝑠) =

𝛼
𝑠+𝛼 . Suppose we’d like to recover the filtered signal (𝜅𝛼 ∗ 𝑠)(𝑡) from the decoding

neuron’s membrane potential 𝑧(𝑡). We know that the residual (𝜅𝛼 ∗ 𝑠)(𝑡) − (𝜅𝛼 ∗ 𝑦)(𝑡) between
the filtered input signal and the filtered spike-train is bounded between 0 and 𝜃, because
whenever the error exceeds that bound, another spike is generated, resetting the error back to
0. Under a few simplifying assumptions (see appendix B.1), this residual has a mean value of
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≈ 𝜃/2 and a root-mean-squared error (RMSE) of ≈ 𝛼𝜃/√12. By reducing 𝜃 (and thus increasing
the firing rate) or 𝛼 (and thus increasing the filter’s time-constant), we can therefore reduce
the error bound arbitrarily and get uniform convergence lim𝜃→0 𝑧 = 𝑠 ∗ 𝜅𝛼.

For a constant signal 𝑠(𝑡) = 𝑐 ≥ 𝜃, the neuron’s firing rate thus scales almost ¹⁰ linearly 10 This approximation of themean and
RMSE fail when the mean input to the
neuron goes below 𝜃.

with 𝑐, whereas the expected RMSE remains constant across almost the entire input range of
the neuron. No spikes at all are generated for 𝑐 ≤ 𝜃, so the mean firing rate as a function of
the constant input 𝑐 approximates the rectified-linear unit (ReLU) 𝑓 (𝑐 − 𝜃/2) ≈ max(0, 𝑐 − 𝜃/2).
See also appendix B.1 for a derivation.

As figure 6.1 shows, the LIF neuron is capable of reliably encoding a time-varying signal
into a single pulse-train. Because of its simplicity, a very similar mechanism is also commonly
used in signal processing under the name ΣΔ or ΔΣ modulator [108] or just integrate-and-fire
sampling [173] to convert continuous signals into pulse-trains¹¹. 11 The main difference is, that a ΔΣ-

modulator encodes both positive and
negative changes of the signal into
the rising and falling edges of a bi-
nary pulse-width-modulated signal,
whereas the LIF mechanism encodes
only positive changes into spikes and
relies on the passive leakage for de-
creasing the signal.

Note: Filter-and-fire neurons

The (leaky) integrator represents only one specific type of filter that a neural den-
drite could implement (see chapter 4). By substituting in various other kernels, the
integrate-and-fire model can thus be generalized to a very interesting class of filter-
and-fire models [3]. The leaky-integrate-and-fire (LIF) model with an exponential
kernel shown here is a particularly popular example, since it can be motivated from
biological first principles and can be implemented very efficiently by a single first-
order low-pass filter. But also second-order filters like the 𝛼-kernel, a convolution of
two exponential kernels, are used to model the combined effect of filtering by the
chemical synapse as well as the neuron’s membrane potential [3]. Such a higher-
order filter could help remove the high-frequency noise otherwise introduced by
the discontinuous jumps that result from filtering a spike-train with a first-order
filter. Naturally, the choice of kernel has strong implications for the behavior of the
neuron, and all the arguments from chapter 4 apply to spiking neurons just as well.

6.2.3 Stochastic encoding

A rather different approach to rate-coding utilizes stochasticity. A linear-nonlinear-Poisson
(LNP) spiking neuron [174] fires spikes according to an inhomogeneous Poisson process [175]
that uses the input signal 𝑠(𝑡) as its time-varying rate. The resulting spike-times are stochastic,
but the expected number of spikes per time-interval [𝑡1, 𝑡2] is proportional to the integral
∫𝑡2𝑡1 𝑠(𝑡)d𝑡, just like for the LIF neuron above. But in contrast to the LIF neuron, the spike-times
in that interval are independently and identically distributed with cumulative distribution
function 𝑆, i.e. 𝑡𝑘 ∼ 𝑆−1(𝑢𝑘) where 𝑢𝑘 is a uniform random variable. ¹² In fact, this property 12 Recall that in (L)IF neurons, the la-

tent variable 𝑢𝑘 would instead be (al-
most) regularly spaced at 𝑢𝑘 = 𝑘/𝑁 for
𝑁 spikes.

allows us to elucidate the key difference between the deterministic integrate-and-fire and the
stochastic LNP model: While the spike-times of the IF neuron contain no information besides
the signal 𝑠 (i.e. the spike-times 𝑡𝑘 are deterministic given 𝑠), the spike-times of the LNP
neuron also encode noise (i.e. the spike-times 𝑡𝑘 are randomly distributed with a cumulative
distribution function proportional to 𝑆). A different way of looking at the same phenomenon
is to view the LNP neuron as equivalent to an IF neuron with exponentially distributed
random threshold¹³, or subject to a corresponding distribution of noise on the membrane 13 Since spikes are generated at uni-

formly distributed levels of 𝑆, the in-
crements from one spike to the next
are exponentially distributed.

potential. All other things being equal, the LNP neuron is therefore likely to achieve a much
worse signal-to-noise ratio, as we shall also see below.

Let’s look at an example of LNP neurons in figure 6.1. Just like in the case of the integrate-
and-fire neuron above, the signal can be linearly decoded by filtering the spike-train with an
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exponential kernel. One can show (see appendix B.2), that exponentially filtering the spike-
train provides an unbiased estimate of the signal with an RMSE that approaches √𝛼𝑐/(2𝜆).
Like for the LIF neuron, the expected firing rate response of the LNP neuron to constant
input is therefore given by a rectified-linear function, but unlike the LIF neuron, the RMSE
actually grows with 𝑐.

Key benefits of the stochastic approach and the main reason for its popularity are the
possibility to incorporate noise and its conceptual simplicity, which allows it to be trivially
extended to assemblies of multiple neurons. Deterministic LIF neurons, for contrast, can
show phase-locking and other specific dynamics, or may fail to fire all together if the input
is sub-threshold, whereas LNP neurons respond linearly across the entire input range. The
stochasticity of the LNP neuron could thus actually enhance information transmission in
some specific cases, but it generally comes at considerable expense in others, as we’ll quantify
in section 6.4.

6.3 Rate-coding neurons are linear-nonlinear neurons

We already saw above that the mean firing rate of spiking neurons can be modeled as a
function of their (constant) input signals. Conveniently, this function takes the rectified-linear
form for both LIF and LNP neurons, one of the most popular choices of activation function
in current deep neural network architectures.¹⁴ By making the firing rates sufficiently large, 14 This is of course hardly a coinci-

dence, since the rectified-linear acti-
vation function was in fact modeled
after its (spiking) biological inspira-
tion.

¹⁵ an arbitrary accuracy (i.e. an arbitrarily low RMSE) can be achieved. If we also choose the

15 For the (L)IF neuron, this can be
achieved by lowering the threshold
𝜃, for the LNP neuron by raising the
gain 𝜆.

dendritic filters’ time-constants appropriately, a trained deep neural network can be trivially
translated into a spiking neural network simply by replacing each continuous neuron with
one accordingly configured spiking neuron — et voilà, we have a trained deep spiking neural
network! A direct conversion of this sort has been shown to work even for very large, state-
of-the-art network models [176, 177]. The same idea can be applied to recurrent networks
and reservoir computers, as well (see also [5]). As the success of this one-to-one conversion
confirms, rate-coding really is merely a different implementation of the continuous function
approximation paradigm discussed in chapter 2.

6.4 How good is rate-coding for transmitting information?

If we adopt the rate-coding perspective, the single purpose of spike-based communication
is to transmit analog signals reliably under biological constraints. But which mechanism
works best? How does it fare in comparison to a purely analog implementation? And how
does rate-coding with spikes compare to conventional digital sampling schemes that are
used to simulate deep neural networks? Are rate-coding spiking neural networks a viable
machine-learning alternative to conventional deep neural networks?

I’ll attempt to (partially) answer these questions here, starting with the example shown in
figure 6.1. There, we saw three fundamentally different coding schemes that all represent a
continuous signal by discrete series of binary pulses, but they yield rather different results.
Using the digital “neuron” as a reference, I’ll compare, how efficiently the LIF and the LNP
neuron can encode information into a spike-train. Figure 6.3 shows the RMSE of both neuron
models when encoding the constant signal 𝑠(𝑡) = 𝑐 = 0.5. As we systematically vary the
neuron’s firing rate by varying the LIF neuron’s threshold 𝜃 and the LNP neuron’s gain 𝜆, we
can observe a consistently and substantially lower error for the LIF neuron than for the LNP
neuron. Besides the fact that both the LIF and LNP neuron follow the rate-coding approach
and use the same exponential kernel with rate 𝛼 = 40𝐻𝑧 for decoding, the LIF neuron makes
much better use of the precise timing of each spike, and encodes the continuous input signal
more effectively into a spike train.
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Figure 6.3. Top left: The normalized
mean firing rate as a function of the
constant input 𝑐 matches the (shifted)
ReLU activation function max(0, 𝑥 −
𝑏) closely, where 𝑏 = 0 for the LNP
neuron and 𝑏 = 𝜃/2 for the LIF neu-
ron. The interquartile range of the
LNP neuron’s firing rates (in blue), es-
timated over 50 trials, grows with 𝑐
and is much larger than for an LIF
neuron (in red). Top right: The RMSE
as a function of the firing rate for con-
stant input 𝑐 = 0.5 shows, that the LIF
neuron achieves much lower errors at
equal firing rates than the LNP neu-
ron. Bottom: Spike-trains and decoded
signals in response to a slow varying
sine-wave (black dashed line). For ref-
erence, a 4-bit signal sampled at 20Hz
is included (green).

We can quantify this more accurately with the help of information theory (see appendix B.3
for a derivation), which shows that encoding a (constant) signal with the same specified
accuracy 𝜖 (defined by the differential entropy of the residual) will require a quadratically
larger number of spikes for the LNP neuron than for the LIF neuron as we increase 𝜖!

But how do these simple rate-coding spiking neural network models compare against
an analog implementation or their digital counterparts from deep learning? Not too well,
unfortunately: As figure 6.3 already shows, even for firing rates as high as 10, 000Hz, the
LIF neuron in this setup only reaches an accuracy less than that of a 10bit signal sampled at
20Hz. At a more reasonable 250Hz firing rate, the rate-coding LIF neuron barely matches the
accuracy of a 4-bit signal sampled at a rate of 20Hz, resulting in an effective information
content of less than a quarter bit per spike. The LNP neuron fares much worse than that.

As shown above, this disparity is in large part due to the poor scaling of the accuracy
with the number of spikes, which is linear in the firing rate for the LIF neuron and only
scales with the square root of the firing rate for the LNP neuron. For contrast, the accuracy
of a digital code grows exponentially with the bit-depth of the signal! This is bad news for
rate-coding with spiking neurons, since most deep learning models currently make use of the
much more accurate half-precision (16-bit) or quarter-precision (8-bit) floats or integers, with
only few networks quantized to precisions as low as 4-bit or below [73]. In the rate-coding
context, SNNs also offer no qualitative benefits in terms of raw computational power; to the
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contrary, they are merely used to approximate the behavior of DNNs and can therefore not
be expected to surpass their performance. ¹⁶ Any benefit of rate-coding in biology, machine 16 It is however possible that spiking

neural networks have intrinsic biases
that prove beneficial, e.g. if they had
a regularizing effect of sorts, but I’m
not aware of any proof of that.

learning or neuromorphic hardware must therefore come from a more efficient physical
implementation, rather than an information theoretical argument.

6.5 Optimal rate-coding under metabolic constraints

So far, we focused on the encoding accuracy of spiking neurons (measured by the RMSE) for
some given constant signal. In the language of information theory, this corresponds to the
problem of channel coding. But if we want to fully assess the neuron’s ability to transmit
information, we need to consider source-coding, as well. In section 5.2, we approached this
from the information bottleneck perspective: to make the neuron’s output as informative
as possible, we opted to maximize its entropy (measured in bits/second) while respecting the
metabolic constraints imposed on the neuron. This leads to the most powerful neuron that
the energy budget allows, but in a realistic setting that may not be the best solution overall.
Here, we will instead try to make the best possible use of the energy by optimizing the
metabolic efficiency 𝜀 ≔ ℎ/cost instead, i.e. the entropy of the neuron’s output in relation
to the required power cost (measured in bits/Joule). This alternative approach leads to a less
powerful but more parsimonious neuron, which is a worthwhile trade-off if energy, rather
than the number of neurons, is the most critically limited resource. In general, there is a
four-way trade-off for spiking neurons between raw performance on the one hand, and
firing rates (‘paying with spikes’), the complexity and size of neurons, synapses and circuits
(‘paying with hardware’), and metabolic costs (‘paying with power’) on the other [7]. If we
take into account, that the human brain demands almost 20% of the body’s entire energy
budget [178] and almost 80% of that energy is directly spent on the firing of spikes [178,
179], and scales linearly with the mean firing rate [178, 180], the enormous evolutionary
benefit of increased metabolic efficiency becomes obvious. And indeed, the general tendency
for biological neurons seems to be optimization of metabolic efficiency [6, 7]. The idea of
such an economy of impulses goes back at least to [181] and was formalized by [182] for
populations of neurons. We’ll briefly look at what this implies for the single rate-coding
neuron.

One important observation is, that under rather mild assumptions (see example 4) the
metabolic efficiency is maximized for a unique optimal firing rate 𝜇∗ that strikes a good
balance between the inevitable static power consumption of the neuron, which occurs
regardless of the neuron’s firing rate, and the dynamic power consumption due to the
generation of spikes. A brief back-of-the-envelope calculation in example 4 using parameter
estimates from real neurons puts this optimal rate at a surprisingly low mean firing rate of
around 1.41spikes/𝑠 — much lower than what cortical neurons are capable of, but very well in
line with the distribution of firing rates observed in vivo. ¹⁷ 17 The mean firing rate of human cor-

tical neurons is estimated at 1.15Hz
with a range from 0.5 − 2.0Hz; see
[179] and references within.

Which ever firing rate distribution offers the best trade-off, a neuron could achieve and
maintain it with an appropriate activation function and homeostatic plasticity, as I argued in
chapter 5. For the LNP neuron, this can be implemented by explicitly making the instanta-
neous firing rate a nonlinear function of the membrane potential. This is more complicated
for deterministic (L)IF neurons, because their effective nonlinearity is only implicitly defined
by the neural dynamics, but the effective firing rate function can be influenced by various
indirect means such as filtering (see chapter 4) or nonlinear dependencies between the mem-
brane potential and the input [183] or between the threshold and the membrane potential
[184]. In either case, a homeostatic mechanism like in chapter 5 could help achieve and
maintain this optimal encoding in the face of changing or unpredictable input distributions
¹⁸.

18 Work to apply these ideas to the de-
sign of neuromorphic hardware is cur-
rently ongoing, but not yet completed
at the time of writing this thesis.
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Example 4: Low firing rates optimize metabolic efficiency

Let’s assume that the static power consumption of the neuron is a constant coststatic,
whereas the dynamic power consumption scales linearly with the number of spikes
𝜇 = E[𝑌 ] at a fixed cost of 𝑒spike per spike. The total power consumption of the
neuron is then 𝜇𝑒spike + coststatic. If we further assume that the firing-rate 𝑌 of the
neuron is only subject to additive noise and exponentially distributed, which, as we
saw already in chapter 5, maximizes the neuron’s capacity for a certain mean firing
rate 𝜇, the neuron’s capacity to transmit information is 1 + log(𝑐𝜇) + 𝑐, where 𝑐 is a
unit-dependent scaling factor to make 𝑐𝜇 unit-free. Under these (mild) assumptions,
the efficiency is a function of the mean firing rate

𝜖(𝜇) ∝
1 + log(𝑐𝜇) + 𝑐

𝜇𝑒spike + coststatic
,

which has a unique maximum for

𝜇 = 𝛾/𝑐𝑊 (𝛾), where 𝛾 ≔ coststatic/𝑒spike and 𝑊 is Lambert’s function.

If we take biological measurements from rodents [178] to estimate static and dynamic
power (𝑒spike ≈ 7.12 × 108ATP, coststatic = 3.42 × 108ATP/𝑠, both measured in terms of
the consumed number of adenosine triphosphate (ATP) molecules, 𝑐 = 1s), we get a
factor of 𝛾 ≈ 0.48 and thus an optimal firing rate 𝜇∗ ≈ 1.41Hz.

6.6 Rate-coding spiking neural networks and machine learning

Spiking neuron models are certainly worth studying for both biologists and neuromorphic
hardware designers, but since they are more difficult to simulate in software and rate-coding
offers no apparent qualitative computational benefits over deep learning, they are currently
of little relevance for machine learning. Hence, the viability of SNNs hinges on how well they
can encode continuous signals into spikes and back, and how efficiently this can be physically
implemented. Rather than representational power of the neuron, metabolic efficiency might
therefore be the decisive factor behind the evolutionary success of spiking neural networks.

In the following chapter 7, we’ll pursue this idea to it natural conclusion by looking at
even more parsimonious, event-based alternatives to the rate-coding paradigm itself.
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Time represents itself.

— Boahen in [185]

What we have found is that at least a comparable information capacity is potentially
available in respect of impulse timing [...] and it seems unlikely that the nervous system
functions in such a way as to utilize none of this.

— MacKay and McCulloch in [166]

7 Spike-timing and event based computation

In chapter 6 we came to the sobering conclusion that in order to match the accuracy of linear-
nonlinear neurons, rate-coding neurons would have to fire at excessive firing rates. The
high metabolic cost associated with the generation of spikes makes such “naive” rate-coding
theoretically unappealing for biological and artificial neurons. We addressed this issue by
directly optimizing the firing rate distribution for metabolic efficiency instead, which resulted
in a much more efficient encoding with firing rates as low as 1Hz. While such low rates are
in line with experimental observations, they pose a theoretical conundrum for rate-coding:
We assumed that a rate-code should be linearly decodable by the dendritic filter of another
neuron i.e. on a timescale on the order of tens of milliseconds — but a rate of 1Hz is orders
of magnitude too slow to be smoothed by a dendritic filter! One way to make sense of this is
to consider that each neuron receives input from not just a single other neuron, but from
thousands, and it could be their combined input that rate-codes a signal. But this explanation
raises another question: If all of these neurons encode the same signal through their firing
rates, this redundancy increases the energy cost again — destroying any gains in metabolic
efficiency due to the individually lower firing rates. Wouldn’t a single neuron at a higher
firing rate be more efficient? ¹ On the other hand, if all of these neurons encode different 1 In chapter 6 we saw that the power

consumption scales almost linearly
with firing rates with a per-neuron
overhead due to static power con-
sumption. Such a redundant popula-
tion code would therefore almost cer-
tainly be less efficient.

signals, each of these signals is represented by a too low firing rate to be interpretable in a
rate-coding setting, and we’re back to square one.

In this chapter, I’d therefore like to ask a more fundamental question: Is rate-coding
already the best we can do, or is there a more metabolically efficient code for spike-based
communication?

An early study [166] applied tools from information theory to establish limits for how
much information a single spike could, in principle, transmit in a realistic setting. Their
estimate put this capacity at an astonishing 9 bits per spike — orders of magnitude larger
than what we saw for rate-coding neurons in chapter 6! ² Early empirical studies have yielded 2 For example, we saw an LIF neuron

firing around 300 spikes per second to
encode a signal with an accuracy and
speed roughly comparable to a 4 bit
signal sampled at 20Hz, i.e. at a rate
of only about 0.27bits per spike.

more conservative estimates for the amount of information actually transmitted per spike in
vivo (around 1 bit per spike, see [186] for a (dated) review), but some more recent experiments
do come surprisingly close to this theoretical limit, demonstrating transmission of around
5.6 − 7 bits per spike [7, 187]! In order to achieve such a high information content per spike,
merely counting the average rate of spikes per second is not sufficient — the timing must
be taken into account, as well. In the following, we’ll therefore look at spike-timing-based
codes.
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7.1 Spike-time coding

Depending on the definition, there might be infinitely many different spike-trains with the
same (time-varying) firing rate, so there is a lot of potentially relevant information encoded
in the precise spike-times in addition to the mere firing rate (see also example 5). But how
could a biological neuron extract such timing information?

Example 5: Phase coding is pulse-position modulation (PPM)

To understand how spike timing allows a single spike to convey multiple bits of
information, we can make a simple analogy to a digital serial code that uses a “one-
hot”-encoding with 2𝑛 bits to convey 𝑛 bits of information. In the case of 𝑛 = 4, this
means that within a time-interval discretized into 24 = 16 time-steps, exactly one bit
is active:

𝜙 = 6.5/16

relative spike-timing

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

digital one-hot encodings

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0.25 0.5 0.75 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

time

…

…

0000:

0001:

0110:

1110:

1111:

By looking at which bit is active within a given interval, we can thus recover 4 bits
of information encoded by the corresponding sequence (here, 0110). A single active
bit (or spike) in this example therefore transmits 4 bits of information! Note however,
that this requires a reference signal to indicate the start of the interval and a precise
clock signal against which the relative timing of the spike can be measured. Therefore,
phase coding is just the time-continuous counterpart of pulse-position-modulation, a
popular digital encoding scheme in signal processing !

Let’s look at two popular models of spike-time coding that can be implemented by
integrate-and-fire neurons (see also example 6):

The first makes use of the timing-delay between a neuron’s spikes and a separate reference
signal to encode a real-valued number. The reference signal could either be some particular
event such as the onset of a stimulus or a saccade (then also called “time-to-first-spike” coding
[188]), or it could be some change in the electrical potential of the neuron. If the reference
signal is periodic, such as theta oscillations in hippocampus [189], the spike-train thus
encodes a periodically sampled signal. Each sample is then encoded by the relative phase-
delay between the spike and the reference signal, which is why this code is also referred
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Example 6: Implementing phase and ISI-codes

Information can be encoded by the timing of spikes relative to some reference signal.
Here, the reference signal could be either a spike from another neuron or a specific
phase of a background oscillation (phase coding), or it could be the previous spike
from the neuron itself (ISI coding).

phase-coding

inter-spike-interval coding

𝜙 = 0 𝜙 = 0

𝜙1 ≈ ? 𝜙2 ≈ 0.6𝜋 𝜙3 ≈ 0.6𝜋

𝜙2 ≈ 1.6𝜋 𝜙3 ≈ 0.2𝜋𝜙1 ≈ 𝜋

In either case, the relative timing of each spike provides one real valued sample.
Using a simple mechanism like dendritic filtering with a slowly decaying exponential
filter that is triggered by the reference signal, the relative timing delay of a spike to
the reference is a (nonlinear) function of the remaining trace at spike-time.

to as phase-coding. For a comparatively slow reference signal, such a code results in a very
sparse spike-train with, in the extreme case, only a single spike per cycle that encodes a
multi-bit measurement! Just like in the linear-nonlinear neuron model, synaptic weights can
be used to change the timing of spikes, and the real-valued samples encoded by the relative
spike times can be used for universal computation (see e.g. chapter 2 of [3]). Such a code
also offers some computational advantages over the rate-codes from chapter 6: Consider,
for example, an assembly of multiple neurons, each of which represents a different feature
of an input signal and is decorrelated from its neighbors by inhibitory lateral connections,
e.g. via some inhibitory inter-neuron. The neuron with the strongest response then fires
first, and thus disables the others before they can fire. Such an assembly would compute the
maximum operation over multiple signals with only a single spike fired! This mechanism is
also extremely robust to changes in scale: If all neurons’ responses were scaled down, the
time of each spike might be delayed, but the order would be preserved, leading to the same
result. This is consistent with the observations that cortical neurons typically fire at much
lower frequencies and respond faster than the rate-coding perspective would require (see
chapter 6), and that most information about a novel stimulus can often be decoded from just
the first few spikes [188].

The second kind of spike-timing code is inter-spike-interval (ISI) coding [3], and it assumes
that information is conveyed by the precise time-interval between two consecutive spikes.
Just like with periodic sampling, a bandwidth-limited analog signal can in principle be
encoded, transmitted and decoded without loss [107] using such an encoding³. A biological 3 However, optimal decoding of such a

signal might require a more complex
mechanism than the linear decoder
we required in chapter 6.

neuron might implement this e.g. by an exponentially decaying trace of the membrane
potential or some chemical, which is reset to a fixed value by each spike. The value of the
trace at any point in time then (nonlinearly) encodes the time since the previous spike, and
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affects the likelihood of the neuron to fire once it receives a new input. One might argue
that this is quite similar to what the leaky-integrate-and-fire model already does in the limit
of extremely low firing rates, and the key to explain its superior performance over the LNP
model (see chapter 6).

Both of these spike-timing based encoding-mechanisms integrate nicely with the theoret-
ical framework of spike-timing dependent synaptic plasticity (STDP) [190], which not only
consider the simultaneous firing rates of the pre- and postsynaptic neuron (like rate-based
Hebbian rules), but also the relative timing of their spikes.

7.2 Event coding

Both of the spike-timing-based approaches above rely on the same basic assumption as
rate coding, that a spike-train ultimately encodes some time-varying, continuous signal
or samples thereof. This provides a nice mathematical framework in which to compare
various encoding schemes, and it integrates perfectly with the prevalent machine-learning
perspective of neural networks as continuous function approximators (see chapter 2). But
in some situations this might be an overly convoluted way of explaining a much simpler
phenomenon: the neuron just fires a spike, whenever it receives a “relevant” stimulus! I’ll
call this simpler view the event-coding paradigm, in which each spike (or volley of spikes, as
we shall see later) represents the occurrence of a specific event, rather than a real-valued
sample of some continuous signal. Conceptually, this is much closer to an interrupt- or
event-driven rather than a sampling-based mode of communication, which is also used in
digital electronics to convey sparse signals with little latency.

A biological example of such an extremely parsimonious event-based code can be found in
the fast sensory pathway of the weakly electric fish [191], where spherical neurons produce
only a single individual spike in response to a prolonged stimulation. That neurons would
use such an event-based style of communication also seems reasonable from an evolutionary
perspective, since many of the biological mechanism used by spiking neurons predate the sort
of nervous system required to even generate or interpret a rate-, ISI- or phase-coded signal.
Consider for example bacteria that can form biofilm and coordinate through chemically
communicated electric action potentials [192], or the rudimentary Ca2+ signallingmechanism
already present in choanoflagellates [193] that predate animal life. Here, an event (e.g. high
concentration of a chemical) triggers a specific response (e.g. release of chemicals, formation
of a biofilm) — a simple mechanism that might be a precursor to spiking neurons and is best
understood from this event-driven perspective. In another evolutionary stage, nerve-nets
[91], action potentials often induce some synchronized behavior throughout the body of an
animal. For example, pacemaker neurons of the jellyfish generate periodic action potentials
that trigger a nerve-net of motor neurons to drive synchronized contraction of swimming
muscles [91]. The output of these pacemaker neurons can be best understood as a form
of event-coding. The spike-based transmission of information might therefore originate in
some form of event-coded sensory or motor signals. By triggering these event detectors at a
stimulus-dependent rate, it is conceivable that rate-based codes could also have emerged
from such a simpler event-based code.

7.3 Detecting events in spike-trains

But what exactly constitutes an event, and how can such an event be detected? While this
may be clear for a sensory neuron, we need to specify what event means in the context of
cortical neurons that only receive spiking input from other neurons. I will give two different
definitions, fixed spatio-temporal patterns, and ordered but variable sequences of such patterns.
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Most of these ideas apply to continuous signals as well, but in both cases I will focus only on
spike events.

𝑡0 − 3 𝑡0 − 1 𝑡0
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)

fixed spike pattern
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spike sequence
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Figure 7.1. Left: A pattern-detector
for one spike each from two incoming
spike-trains. The kernel for each input
filter is shown in red and blue, respec-
tively. Only the spike pair (𝑎) → (𝑑)
is an accepted pattern. Middle: A de-
tector for a sequence of one spike in
input 1 that precedes another spike
in input 2 by some bounded time-
interval. Both patterns (𝑎) → (𝑑) and
(𝑏) → (𝑑) are accepted. Right: The
same detector for a sequence of spike-
volleys, rather than individual spikes.

7.3.1 Fixed spatio-temporal patterns

The most obvious definition of an event would be a stereotypical signal that last for a brief
time-interval and always follows the same time-course. For spiking signals, that would be a
fixed pattern of spikes over time, distributed across one or more neurons. We can define this
as follows:

A spike pattern event 𝑃 = {𝜏𝑖,𝑗 ∶ 𝑖 ∈ {1, … , 𝑛}, 𝑗 ∈ 𝐽𝑖} that occurs at time 𝜏 produces the
𝑛-dimensional signal 𝑃𝑖(𝑡) = ∑𝑗∈𝐽𝑖 𝛿(𝑡 − 𝜏 − 𝜏𝑖,𝑗), where 𝜏𝑖,𝑗 are called the spike-times of the
pattern. 𝐽𝑖 is the index set of spikes belonging to neuron 𝑖 in this pattern.

To detect such a pattern, a neuron could make use of a dendritic filter that implements the
matched filter of the pattern, i.e. a kernel 𝜅(𝑡) = 𝑃(𝑇 − 𝑡) for some 𝑇 (see chapter 4). To allow
for small jitter in the timing of the spikes, we can additionally smoothen the dendritic filter
by convolution with some other kernel 𝑔.⁴ Additional spikes not belonging to the pattern at 4 This corresponds to a Janossy dis-

tance metric over spike-trains [194]
and could be similarly derived from
optimal transport theory [195].

all can also affect the filter response, so an appropriately high threshold needs to be chosen
to allow a reliable distinction between pattern and noise. The detection of such fixed patterns
therefore reduces to dendritic filtering and thresholding, which e.g. the Gamma-neuron from
chapter 4 with appropriate number of filter taps can approximate very well.

While the ability to detect such stereotypical patterns is certainly useful, this kind of
event-detector suffers from two draw-backs. First, biological parameters determine the time-
scale of dendritic integration, which limits the length of patterns that can be detected by this
mechanism and may prove to be too short for many interesting patterns. Second and more
importantly, this definition of a spike pattern is extremely rigid, as it prescribes the exact time
of each spike in the pattern with little room for variability. This is fine for detecting relatively
short patterns, such as volleys of (nearly) synchronous spikes or rapid successions of spikes
produced by a “hard-wired” cell assembly or motive. The high timing precision of some
cortical neurons [196, 197] shows that such well-timed spike patterns are certainly possible
to generate. But for longer lasting patterns, in particular if they are driven by external inputs
that can vary in length, we’d expect some variability in the timing of the individual spikes.

7.3.2 Ordered (but variable) sequences of spikes and spike patterns

Instead of prescribing the actual spike times as above, we might only be interested in the
order in which certain spikes arrive. For example, a spike from neuron 𝐴 followed by a
spike from neuron 𝐵 would constitute a noteworthy event regardless of the precise timing
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of either spike (as long as 𝐵 fires within some time interval after 𝐴). This would be a very
parsimonious code, as well, but it relies on the ability of an individual spike to reliably encode
the occurrence of some event. Conversely, a single erroneously generated spike could trigger
such a neuron and lead to a false detection.

To improve the reliability of such an event-based code, we can extend this concept to
ordered sequences of spike patterns, e.g. sufficiently large volleys of spikes from some assembly
of neurons rather than individual spikes. In the notation from above, such a spike volley
corresponds to a pattern with a single spike per neuron (i.e. 𝐽𝑖 = {1}), all of which are set
to occur at roughly the same time (i.e. 𝑡𝑖,𝑗 = 0). This can be easily detected by a dendritic
filter, e.g. the fast exponential filter of the leaky-integrate-and-fire neuron model or a brief
rectangular filter would work. Since multiple synchronous spikes are required to elicit a
response, such an encoding would be extremely robust to noise, while having very low
latency and requiring only relatively few spikes to signal a noteworthy event.

7.4 Active dendritic sequence processing

The ability to detect sequences of spike-volleys as discussed above would be a very useful
property for spiking neurons to have, but it requires more sophisticated biological mecha-
nisms than just passive dendritic integration. Over the last century, a lot of research has gone
into studying the electrical properties of cortical neurons, but only in the last two decades
has the vastly improved technology in neuroimaging and electrophysiology allowed a deeper
investigation of one rather fundamental property of cortical neurons: Neural dendrites are
not just the passive cables we considered in chapter 4, but they can produce localized long-
lasting depolarization, i.e. dendritic NMDA or calcium spikes or, as I will collectively call
them, plateau potentials [198]. These actively generated effects have been shown to play
an important role in cortical UP-states [199], the generation of spikes and bursts, synaptic
plasticity and learning, non-linear dendritic computation, and more [198]. In an apparent
case of convergent evolution, physiologically different but functionally similar mechanisms
exist not just in cortical pyramidal neurons, but also in other cell types such as Purkinje cells
[200].

London and Häusser [201] suggested that such localized processes would endow a single
dendrite with countless functional subunits, which might be the key to understanding a
neuron’s computational capabilities. Given the importance and ubiquity of this phenomenon,
it is surprising how few models in theoretical neuroscience and machine learning currently
incorporate active dendritic processes or offer an explanation of their contribution. This may
in part be due to inconclusive and sometimes even contradictory biological evidence⁵, which 5 For example, it has been reported

that individual spike-inputs at apical
dendrites might have no measurable
impact on somatic membrane poten-
tials due to strong signal attenuation
[202] just as it has been reported that
this effect might be completely com-
pensated for by synaptic scaling [141].
Strongly nonlinear interactions be-
tween localized dendritic membrane
potentials have been demonstrated
[142], but other results show a nearly
linear integration through the entire
dendrite [203]. The list goes on.

makes it difficult for theoreticians to decide, which phenomena are fundamental, and which
are merely “quirks of nature”. Two very interesting models by Hawkins and Ahmad [204]
and Brea, Gaál, Urbanczik, and Senn [205] include such active dendritic processes to explain
the emergence of a predictive UP-state in the neuron’s somatic membrane potential, which
allows the individual neuron to predict (and learn) “state-transitions” and a network of such
neurons to (learn to) detect long-lasting sequences of input! We build on these ideas and
derive a much more general model of this process, which we call active dendritic sequences
processing.

The proposed model and its derivation from basic biological principles and observations
is detailed in contribution 7. It uses passive dendritic filtering (i.e. the integration of EPSPs)
in individual, electrically isolated dendritic compartments to detect volleys of coincident
spikes originating from some populations of neurons. Upon detecting such an event, an active
process generates a localized, long-lasting depolarization (a plateau potential), which enables
a nearby dendrite segment to detect the next volley event in the sequence. If the second
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Note: Stochastic population codes with event-based spiking neurons

Just like a single spike, a spike volley is a well-timed event that can be used for
an event-based code. But unlike the single spike, it conveys an additional piece of
information besides the timing of the event: the magnitude of the volley, i.e. the
number of participating spikes. This could carry either of two different interpretations:
it could signify the magnitude of the corresponding event, just like an earth-quake
event has a time andmagnitude, or it could signify the probability with which a binary
event has occurred, encoding the detector’s uncertainty. The latter interpretation is
very useful in the context of detecting sequences, as it allows a population of sequence
detectors to encode their uncertainty. It also offers a simple interpretation for the
unreliable transmission of spikes by stochastic synapses:With deterministic synapses,
a spike volley of a given magnitude will either always or never suffice to trigger a
plateau potential. But with stochastic synapses, only a random subset of those spikes
will be transmitted. Therefore, the probability, that the effective size of the spike
volley is sufficient to trigger detection depends on the magnitude of the volley. This
turns the individual ADSP neuron into a probabilistic detector, which responds to a
sequence of input patterns with a probability that reflects the uncertainty encoded in
the input signals. For example, a sequence where each required event has occurred
with high certainty will lead to a sequence of large spike volleys, which will be
detected with high probability. However, if any of the events only occurred with
reduced probability, the corresponding spike volleys will be smaller, and hence the
detector is more likely to not respond. By combining multiple such detectors into
an assembly, we again produce a code of spike-volleys, where the magnitude of the
volley is the number of triggered detectors, and thus encodes the probability of the
sequence having occurred. This is highly beneficial if we want the population to
quickly produce a graded response to a spike-based input [206]! Therefore, ADSP
neurons with stochastic synapses can be combined into assemblies or populations
that communicate via a stochastic, event-based population code (see also chapter 6 of
[115])!

pattern actually occurs during this plateau, a new plateau is generated in that segment,
which in turn activates another dendrite segment, and so on. This procession can make its
way to the soma, where it then triggers a spike, if and only if the entire sequence of events
has occurred in the correct order. Importantly, the precise timing of the individual volleys
doesn’t matter here, as long as they happen in the correct order (and within the specified
time-intervals). This allows individual neurons to detect ordered sequences of incoming
spike volleys that can last hundreds of milliseconds! Not only does this mechanism allow
an individual neuron to detect sequential inputs, but it also provides a simple yet reliable
mechanism to do non-linear computations with spike-volleys in continuous time. This also
resolves the important question, how the fast (passive) neural membrane potential dynamics
can contribute to the detection of patterns on a much slower, behaviorally relevant timescale:
Our model only uses the fast dendritic filter to detect brief volleys of coincident spikes,
rather than complex temporally extended patterns as in chapter 4. The further integration
of that information on a slower time-scale is then due to long-lasting plateau potentials.
This is a more realistic interpretation of biological evidence [207]. Since this mechanism is
invariant to changes in the precise timing of the spikes (or spike volleys), it would allow
the detection of such sequences across multiple time-scales, which might be relevant e.g.
for reactivation, replay or preplay of hippocampal place-cell activity [208–210]. If we once
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again draw a comparison to concepts from computer science and electronics, this behavior
is better described by a state machine or timed automaton [211, 212], rather than the logic
gate we saw in chapter 3.

Contribution 7: Event-based pattern detection in active dendrites

In this manuscript, we derive a simple yet powerful mechanisms of dendritic com-
putation in single neurons from first biological principles. Our model makes use
of actively generated dendritic plateau potentials, which provide the neuron with
distributed processing elements and memory traces that collectively allow a single
neuron’s dendritic tree to process information in nonlinear ways and on timescales
that exceed the typical timescales of membrane potentials by orders of magnitude.
We show how this event-based mechanism can be used to reproduce well known
nonlinear computations when viewed from a rate-coding perspective, but also how
it goes much further than that by detecting specific long-lasting sequences of spike
volleys and integrating information from a vast number of inputs over comparatively
long time-scales. A pre-print of this paper is publicly available, and a revised version
of the same manuscript is currently still under review.

Reference (see also appendix C, page 187ff for the full text):

J. Leugering, P. Nieters, and G. Pipa, “Event-based pattern detection in active den-
drites,” bioRxiv, p. 690 792, 17, 2020. doi: 10.1101/690792.

To better understand how such a neuron can process information through the interaction
of localized process that are distributed throughout the dendrite, an analogy can be made to
decision trees, which rely on a similar hierarchical structure to classify high-dimensional
inputs. A modified learning rule for decision trees can therefore even be used to train this
biologically motivated neuron model! I investigated this perspective in contribution 8.

The event-based detection of long sequences results in a highly parsimonious code,
which offers potentially large savings in energy consumption for biological neurons and
neuromorphic hardware alike, which is why we also filed a patent for a digital neuromorphic
circuit model of an ADSP neuron that can be implemented in a fully digital electronic circuit
(see contribution 9).

7.5 Rate-, phase-, ISI-, or event-coding?

So which code do spiking neurons actually use: rate-, phase-, ISI-, or event-coding? This
question goes back almost 70 years to [166], who used information theory to analyze the
maximum capacity of a synapse under various assumed codes. But the answer is context
dependent and differentiating between these paradigms can be surprisingly difficult.

To illustrate how much the answer to this question depends on context, consider for the
sake of argument a hypothetical neuron that can detect the presence of a specific odor of
a predator and fires a single spike (or a burst of spikes) whenever it detects a few of its
molecules, which happens once every couple of milliseconds.

Looking at the exact same spike-train, a proponent of rate-coding could rightly argue:
“The more molecules there are, the higher the firing rate of the neuron, hence the neuron uses a
rate-coding approach to encode the concentration of the molecules.”.

http://dx.doi.org/10.1101/690792
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Contribution 8: Making spiking neurons more succinct with multi-
compartment models

In this conference paper, which accompanies a full-length presentation (which was
postponed due to the ongoing SARS-Cov-2 pandemic and is now to be held in March,
2021), I analyze the computational properties of the biologically motivated multi-
compartment neuron model of contribution 7 from a machine-learning perspective.
By transferring and adapting concepts and learning rules developed for decision
trees to this neuron model, I give an intuition for how such a hierarchical structure
like a neural dendrite can be useful for computation, and how simple, local learning
rules might be enough to optimize such models.

Reference (see also appendix C, page 204ff for the full text):

J. Leugering, “Making spiking neurons more succinct with multi-compartment
models,” in Proceedings of the Neuro-Inspired Computational Elements Workshop, 17,
2020, isbn: 978-1-4503-7718-8. doi: 10.1145/3381755.3381763.

A proponent of ISI-coding could argue with equal justification: “Since the incoming events
are essentially Poisson-distributed with time-varying rate, two detections in short succession are
a good indicator of a high concentration, so the neuron uses an ISI-coding approach.”.

A proponent of Phase-coding could say for much the same reason: “The waiting time
between phase zero of some reference oscillation and the first detection of a molecule gives an
estimate of the concentration, so the neuron uses a phase code.”.

From an event-coding perspective, I would argue: “The neuron merely signals each event,
i.e. the detection of a molecule, with a spike.”.

Neither of these explanations is wrong, but the way this thought experiment was set
up, they are not equally useful: In order for some downstream neuron to make the decision
whether the animal should stay or run away, the rate-coding perspective would require
passing the spike train through a low-pass filter with a long enough time-constant to combine
the effects of multiple spikes (see chapter 6), which introduces an inevitable and irreversible
delay into the signal (see chapter 4). To reach some specific accuracy in the decoded signal,
the filter must be longer and hence the response must slower the fewer spikes there are. This
is obvious a problem in our thought-experiment, since the animal wouldn’t have the luxury
of waiting that long! The phase coding approach would require some reference signal, the
rate of which limits the response time of the animal and the phase of which introduces an
independent random variable. ISI coding would require multiple spikes in order to assess
their relative timing. In the extreme case, where a decision must be made based on a single
spike, event-coding thus seems to be the only viable explanation of the neuron’s code.

But in a slightly different situation, e.g. if a decision to stay or run away is not based
on the detection of individual molecules, but rather on whether the average concentration
exceeds some higher threshold for some period of time, a rate-coding view might very well
offer the better explanation! In fact, two different “decoders” downstream from the neuron
might even simultaneously decode the same spike-train for different purposes by ways that
can be explained by different paradigms. A crucial take-away of this thought experiment is
therefore, that the coding paradigm we use to explain neural firing depends as much on the
receiver as it does on the transmitter!

http://dx.doi.org/10.1145/3381755.3381763
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Contribution 9: “Neuromorpher Musterdetektor und neuromorphe
Schaltkreisanordnung hiermit” (German patent filing)

Based on the insights derived from the neuron model of contribution 7, we designed
a digital neuromorphic circuit that can efficiently realize the computation required
for active dendritic sequence processing without the need for any general purpose
processing elements like arithmetic-logic-units or micro-processors. It implements
a processor for temporal patterns and sequences in each hierarchically structured
neuron through a combination of pulses of different lengths, just like its biological
counterpart. Homogeneous assemblies of multiple such neurons then communicate
with each other through a code that serializes and transmits multiple spike-trains
over a single binary connection.

Reference (see also appendix C, page 210ff for the full text):

J. Leugering, P. Nieters, and G. Pipa, “Neuromorpher Musterdetektor und neuro-
morphe Schaltkreisanordnung hiermit,” pat. pending.

But one obvious benefit of event-based communication is that it allows for a maximally
sparse code, where each event of interest is represented by just a single spike. A neural
network thus becomes a network of interconnected pattern detectors, where neurons close
to the periphery detect patterns in the input stimuli, while neurons deeper within the
nervous system can be thought of as detecting “patterns of patterns”. This argument is very
appealing for both computational neuroscience and for implementations of spiking neural
networks in the context of machine learning and neuromorphic hardware. However, this
requires individual neurons to be able to detect relevant patterns in the first place. This
requires an extension of our spiking neuron models, which incorporates well-known but
often neglected active processes that occur within the dendrites. Due to the solid foundation
of this mechanism on biological evidence and the powerful computation it enables, I believe
event-coding to be a fundamental, if not the primary, mode of spike-based communication.
Consequently, I have come to view rate- and phase-coding as modifications or refinements
thereof, which become relevant when some type of event occurs often enough to admit a
notion of rate, or when its timing is only relevant in relation to some reference signal.
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Perfection is finally attained not when there is no longer anything to add, but when there
is no longer anything to take away.

— Terre des hommes, Antoine de Saint-Exupéry

I feel like I’m just gluing oranges to hair-dryers!

— Anonymous

It’s the most powerful words in the world. No argument or eloquence can stand a chance
against it. [...] It’s: ”So what?”

— Dusty Attenborough, Ginga Eiyū Densetsu

8 Conclusion

As we have seen in chapter 1, the study of artificial neural networks started with an attempt
to capture the basic mechanism by which biological neurons process information, and to
distill it into an abstract mathematical model. And still today, such artificial neural networks
are used as the dominant metaphor to explain “how the brain works”, i.e. how it is, that
sensory information is processed, decisions are made and actions are taken. The success
of deep learning has left many with the illusion that we have finally “cracked the code”
of neural information processing, and in a (surprisingly unsurprising) twist, the answer
appears to be the same function approximation framework that was already proposed by
cyberneticists in the 1960s, and then again by Connectionists in the 1980s. Of course, the
capability of recent (deep and/or recurrent) artificial neural networks to solve all sorts of
machine learning problems has improved to an impressive degree, and demonstrates the
enormous potential of neural networks much more effectively than either cyberneticist
or theoretical neuroscientists could. However, these models, which we briefly looked at
in chapters 2 and 3, are primarily designed with machine learning applications in mind
and hence provide an extremely simplistic, sometimes even misleading, perspective on
information processing in the brain. This does not discredit deep neural networks in the
least, but it shows that despite their common origin, neuroscience and deep learning have
fundamentally different objectives, and caution is required when transferring intuitions from
one to the other. Goodfellow, Bengio, and Courville [39] summarized this clearly:

[O]ne should not view deep learning as an attempt to simulate the brain. […] It is worth noting
that the effort to understand how the brain works on an algorithmic level is alive and well. This
endeavor is primarily known as “computational neuroscience” and is a separate field of study
from deep learning. It is common for researchers to move back and forth between both fields. The
field of deep learning is primarily concerned with how to build computer systems that are able
to successfully solve tasks requiring intelligence, while the field of computational neuroscience
is primarily concerned with building more accurate models of how the brain actually works.

But this is not to say that machine learning and theoretical neuroscience couldn’t benefit
from each other. Quite to the contrary, I believe that neuroscientists could benefit greatly
from the analysis tools developed in machine learning, electrical engineering and computer
science, whereas computer scientists and engineers interested in machine learning would do
well to take more inspiration from the biological mechanisms analyzed in neuroscience!

Throughout this entire thesis, I have therefore attempted to discuss several inherently
biological phenomena that defy this framework in the language of engineering, i.e. den-
dritic filtering in chapter 4, homeostatic plasticity mechanisms in chapter 5, spike-based
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communication in chapter 6 and finally event-based mechanisms of neural computation in
chapter 7.

To decide whether these additions are actually instrumental for information processing
or merely abstract descriptions of a needlessly complicated biological mechanism, we will
have to put them to the test. I have come to believe that the best way to do that is by looking
across the domain boundaries between neuroscience and adjacent disciplines, in order to
find inspiration and to test ideas in a less forgiving environment outside one’s own control.
Particularly the embodiment of concepts from theoretical neuroscience in neuromorphic
hardware appeals to me as a tough, but honest benchmark that makes it possible to evaluate
the merit of many theoretical models of neural computation “in the real world”. I therefore
believe that many future innovations in theoretical neuroscience will originate in or be
driven by such application oriented fields, which also motivated my own transition towards
neuromorphic hardware.
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A Appendix for chapter 4

Note:

Some derivations in this appendix can also be found in similar form in the original
work on the Gamma neuron [125, 126], others come from (unpublished) work in
our lab. I have decided to re-derive and compile them here for conciseness and
completeness. At some points, we have also slightly extended the Gamma neuron
beyond its original definition or taken it out of its original context, but decided to
keep the established name for our more general extension.

A.1 Equivalence between filtering and continuous delays

Filter and (continuous) delay operators are very closely related.
To show the first direction of this relationship, consider a continuous signal 𝑠(𝑡). Any

operator 𝐷 that delays 𝑠 by some fixed delay Δ𝑡 ≥ 0 can be expressed as a causal filter with a
shifted Dirac-distribution as its kernel:

𝐷𝑠(𝑡) = 𝑠(𝑡 − Δ𝑡) = ∫
𝑡

−∞
𝑠(𝜏 )𝜅(𝑡 − 𝜏)d𝜏

𝜅(𝑡) ≔ 𝛿(𝑡 − Δ𝑡)

Conversely, for a continuous signal 𝑠(𝑡) and a causal filter with (piece-wise) continuous
kernel 𝜅(𝑡), we can use the Riemann integral to approximate the effect of the kernel 𝜅 by a
linear combination ̄𝜅 of shifted and scaled 𝛿-pulses:
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(𝑠 ∗ 𝜅)(𝑡) = ∫
𝑡

−∞
𝑠(𝜏 )𝜅(𝑡 − 𝜏)d𝜏

= lim
Δ𝑡→0

Δ𝑡
∞
∑
𝑘=0

𝑠(𝑡 − 𝑘 ⋅ Δ𝑡)𝜅(𝑘 ⋅ Δ𝑡)

= lim
Δ𝑡→0

Δ𝑡
∞
∑
𝑘=0

(∫
𝑡

−∞
𝑠(𝜃)𝛿(𝑡 − 𝜃 − 𝑘 ⋅ Δ𝑡)d𝜃) 𝜅(𝑘 ⋅ Δ𝑡)

= ∫
𝑡

−∞
𝑠(𝜃) lim

Δ𝑡→0
Δ𝑡

∞
∑
𝑘=0

𝜅(𝑘 ⋅ Δ𝑡)𝛿(𝑡 − 𝜃 − 𝑘 ⋅ Δ𝑡)d𝜃

= (𝑠 ∗ ̄𝜅)(𝑡) where ̄𝜅(𝑡) = lim
Δ𝑡→0

Δ𝑡
∞
∑
𝑘=0

𝜅(𝑘 ⋅ Δ𝑡)𝛿(𝑡 − 𝑘 ⋅ Δ𝑡)

A.2 Transfer function of the Gamma neuron

Consider the Gamma neuron as described in section 4.4. We can analyze the linear system
realized by its dendritic filter in the Laplace domain. Let us denote the Laplace transform of
the 𝑗th input signal 𝑠(𝑡) with 𝑆𝑗(𝑠), and the Laplace transform of the output signal of the 𝑖th

tap of the dendritic filter with 𝑋𝑖(𝑠), where 𝑋1(𝑠) is the output of the filter tap closes to the
soma. To simplify the analysis, we separate the feed-forward and the feed-back paths of the
model by defining the open-loop impulse-response to the 𝑗th external input signal (denoted
𝜅fwd
𝑗 ) as well as the open-loop impulse-response of the neuron to its own output 𝑦 (denoted

𝜅fb).
In the absence of feedback, an impulse arriving at the 𝑖th tap from the soma has to traverse

𝑖 filters on its way to the soma, and hence produces (in the Laplace domain) a filter response

( 𝛼
𝑠+𝛼)

𝑖
— which corresponds to the probability density function of a Gamma distribution

with coefficients 𝑖 and 𝛼.
For a neuron with 𝑛 taps and 𝑚 input signals and time-constant 𝛼, these individual impulse

responses of the taps are scaled by the forward and feedback weights 𝑤𝑖,𝑗 and 𝑣𝑖, respectively,
and linearly combined to yield the effective dendritic filter kernels:

𝜅fwd
𝑗 =

𝑛
∑
𝑖=1

( 𝛼
𝑠 + 𝛼

)
𝑖
𝑤𝑖,𝑗

𝜅fb =
𝑛

∑
𝑖=1

( 𝛼
𝑠 + 𝛼

)
𝑖
𝑣𝑖

We can then derive the transfer function:

𝑋1(𝑠) = 𝜅fb𝑋1(𝑠) +
𝑚
∑
𝑗=1

𝜅fwd
𝑗 𝑆𝑗(𝑠)

⇒ 𝑋1(𝑠) =
𝑚
∑
𝑗=1

𝜅fwd
𝑗

1 − 𝜅fb
𝑆𝑗(𝑠)

=
𝑚
∑
𝑗=1

∑𝑛
𝑖=1 (

𝛼
𝑠+𝛼)

𝑖
𝑤𝑖,𝑗

1 −∑𝑛
𝑖=1 (

𝛼
𝑠+𝛼)

𝑖
𝑣𝑖
𝑆𝑗(𝑠)

= −
𝑚
∑
𝑗=1

∑𝑛
𝑖=1 𝛼 𝑖(𝑠 + 𝛼)𝑛−𝑖𝑤𝑖,𝑗

∑𝑛
𝑖=0 𝛼 𝑖(𝑠 + 𝛼)𝑛−𝑖𝑣𝑖

𝑆𝑗(𝑠)

= −
𝑚
∑
𝑗=1

∑𝑛
𝑖=1 ∑

𝑛−𝑖
𝑘=0 (

𝑛−𝑖
𝑘 )𝑠𝑘𝛼𝑛−𝑘𝑤𝑖,𝑗

∑𝑛
𝑖=0 ∑

𝑛−𝑖
𝑘=0 (

𝑛−𝑖
𝑘 )𝑠𝑘𝛼𝑛−𝑘𝑣𝑖

𝑆𝑗(𝑠)
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The last expression can be simplified using matrix-vector multiplications:

(𝑤 𝑗)𝑖 ≔ 𝑤𝑖,𝑗, 𝑤 𝑗 ∈ R𝑛

(𝑀)𝑘,𝑖 ≔ {
𝛼𝑛−𝑘(𝑛−𝑖𝑘 ) if 𝑘 ≤ 𝑖

0 otherwise
, 𝑀 ∈ R𝑛×𝑛

The matrix 𝑀 above is an invertible matrix, therefore the coefficient vectors 𝑀𝑤 𝑗 and 𝑀𝑣
of this rational transfer function can be freely determined by an appropriate choice of the
feed-forward and feedback weights 𝑤𝑘,𝑗 and 𝑣𝑘, respectively. The resulting transfer function
of the dendritic filter simplifies to:

𝑋1(𝑠) =
𝑚
∑
𝑗=1

∑𝑛
𝑘=1 𝑠𝑘−1(𝑀𝑤 𝑗)𝑘

1 −∑𝑛
𝑘=1 𝑠𝑘(𝑀𝑣)𝑘

𝑆𝑗(𝑠).

The special case of a Gamma neuron without feedback occurs when setting the feedback
weights 𝑣 to zero, which results in the simpler form:

𝑋1(𝑠) =
𝑚
∑
𝑗=1

(
𝑛

∑
𝑘=1

𝑠𝑘−1(𝑀𝑤 𝑗)𝑘) 𝑆𝑗(𝑠)

The Gamma neuron with 𝑛 filter taps and linear feedback can thus be used to implement
a dendritic filter with arbitrary proper rational transfer function (for a single input signal)
with degrees up to 𝑛 − 1 in the numerator and 𝑛 in the denominator. For multiple inputs, the
numerator of this transfer function can be individually chosen for each input, whereas the
denominator (determined by the feedback coefficients) is shared among all inputs.

The ability to freely place zeros and poles (i.e. zeros of the denominator) of the transfer
function makes this type of filter bank with feedback extremely versatile. It is capable of
implementing a wide range of practically relevant filters, such as higher-order Butterworth,
Chebyshev and Elliptic filters in low- and band-pass form. High-pass and band-stop filter can
similarly be implemented, but some limitations apply. For an in-depth look at continuous
filter design, see e.g. chapter 7 of [124].

Derivatives of Gamma filters are Gamma filters

The time-derivative of the open-loop impulse-response of tap 𝑘 ≥ 2 in the Gamma neuron’s
filter can be expressed simply in terms of just two neighboring taps (see also [125]):

𝜅𝑘(𝑡) =
𝛼𝑘

Γ(𝑘)
𝑡𝑘−1 exp(−𝛼𝑡)

𝜅′𝑘(𝑡) =
𝛼𝑘

Γ(𝑘)
(𝑡𝑘−2 exp(−𝛼𝑡) − 𝛼𝑡𝑘−1 exp(−𝛼𝑡))

= 𝛼
𝑘 − 1

𝜅𝑘−1(𝑡) − 𝛼𝜅𝑘(𝑡)

Therefore, the time derivative of any filter constructed without feedback by linear combi-
nation of the taps 𝑘 ≥ 2 can be implemented by the same filter bank, as well. The same
argument applies to the feedback path, and hence the time-derivative can be implemented
for (most) filters constructed with feedback, as well.

In short, this means that the Gamma neuron model can combine filtering and differen-
tiation in the linear operator implemented by its dendrite. The Gamma neuron therefore
posses all the capabilities required of a PID-controller : proportional input (i.e. a 𝛿-impulse
response, e.g. approximated by a quickly decaying exponential filter), integration of input
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(e.g. approximated by a slowly decaying exponential filter) and differentiation of input. See
also [129] for more information about the design of PID-controllers.

A.3 The ring of Gamma filters

As shown in appendix A.2, the Gamma neuron’s dendritic filter has a proper rational transfer
function with order ≤ 𝑛 in the denominator. While rational functions form a field, proper
rational functions only form a ring, since the multiplicative inverse of a proper rational
function would not necessarily be proper. This has an analog physical interpretation: The
sum of two causal filters or the concatenation of two causal filters (with rational transfer
functions) is again a causal filter (with rational transfer function), but a causal filter cannot
be inverted by application of a causal filter (consider as a simple counter-example, that
inverting a delay would require an acausal advance of the signal). This ring is commutative,
but it doesn’t contain a multiplicative identity (this would correspond to a Dirac-𝛿 in the
time-domain), and could therefore be called a pseudo-ring.

While multiplicative inverses don’t exist in this ring, we can approximate a solution of
𝜅2 = 𝜅†𝜅1 for 𝜅† by Euclidean division with remainder 𝑟:

∃!𝜅†, 𝑟 ∶ 𝜅2 = 𝜅†𝜅1 + 𝑟.

Now consider a signal 𝑠 and its filtered version ̃𝑠 ≔ 𝜅1 ∗ 𝑠. We then have

𝜅† ∗ ̃𝑠 = (𝜅2 − 𝑟) ∗ 𝑠

Therefore, while we cannot implement deconvolution, we can use filtering to “replace” the
effect of the filter 𝜅1 with the effect of the filter 𝜅2 − 𝑟, an approximation of 𝜅2. If 𝜅2(𝑠) is now
chosen e.g. to approximate the delay 𝛿(𝑡 − 𝑇 ) for some large 𝑇, then this reconvolution with
the filter 𝜅† approximates a delayed deconvolution, i.e. it approximately recovers the delayed
original signal 𝑠(𝑡 − 𝑇 )!
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Note:

Many of the derivations in this appendix are not new results, and can hence be
found across standard literature like [105, 174, 213]. I have nevertheless decided
to re-derive them here from scratch and compile them in order to provide a more
concise summary and to allow for a direct comparison between the different models
using a common language.

B.1 Rate-coding with (L)IF neurons

Activation function of integrate-and-fire neurons

The pure integrate-and-fire neuron integrates its input up until it hits a threshold 𝜃, at which
point it resets and the process begins anew. For an incoming signal 𝑠(𝑡) with integral 𝑆(𝑡) =
∫𝑡0 𝑠(𝑡), the integrate-and-fire neuron thus produces spikes at the times 𝑡𝑘 = 𝑆−1(𝑘𝜃), 𝑘 ∈ N.
If we filter the resulting spike train 𝜒(𝑡) = ∑𝑡𝑘 𝛿(𝑡 − 𝑡𝑘) by a filter 𝜅(𝑡), we get the decoded
signal 𝑧IF:

𝑧IF(𝑡) = 𝜃 ⋅ (𝜅 ∗ 𝜒)(𝑡) (B.1)

= 𝜃 ∑
𝑡𝑘≤𝑡

∫
𝑡

−∞
𝜅(𝑡 − 𝜏)𝛿(𝜏 − 𝑡𝑘)d𝜏 (B.2)

= 𝜃 ∑
𝑡𝑘≤𝑡

𝜅(𝑡 − 𝑡𝑘) (B.3)

For a constant signal 𝑠(𝑡) = 𝑐 ≥ 0, we get 𝑆(𝑡) = 𝑐𝑡 and hence 𝑡𝑘 = 𝑘𝜃/𝑐. To simplify notation,
we can introduce 𝐾𝑡 ≔ max{𝑘 ∶ 𝑡𝑘 ≤ 𝑡} = ⌊𝑐𝑡/𝜃⌋, which is the index of the last spike before
time 𝑡. If we choose the exponential kernel 𝜅(𝑡) = 𝐻(𝑡)𝛼 exp(−𝑡𝛼), where 𝐻 is the Heaviside
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step-function and 𝛼 > 0 sets the time-scale of the filter, we can compute 𝑧IF:

𝑧IF(𝑡) =
𝐾𝑡

∑
𝑘=−∞

𝛼𝜃 exp(−𝛼(𝑡 − 𝑘𝜃/𝑐)) (B.4)

= 𝛼𝜃
1 − exp(−𝛼𝜃/𝑐)

exp(𝛼(𝐾𝑡𝜃/𝑐− 𝑡)) (B.5)

= 𝛼𝜃
1 − exp(−𝛼𝜃/𝑐)

exp(−𝛼Δ𝑡) where Δ𝑡 ≔ 𝑡 − 𝑡𝐾𝑡 (B.6)

This expression depends only on the relative time Δ𝑡 since the previous spike, and repeats
after every spike. Therefore, the “decoded” spike-train is a periodic signal of discontinuous
jumps after every spike with period 𝑡𝑘+1 − 𝑡𝑘 = 𝜃/𝑐, followed by exponential decay. We can
thus compute the mean signal by averaging it between two successive spikes:

̄𝑧IF(𝑐) =
1
𝜃/𝑐 ∫

𝜃/𝑐

0
𝑧IF(𝑡)dΔ𝑡 (B.7)

= 𝛼𝜃
𝜃/𝑐

⋅ 1
1 − exp(−𝛼𝜃/𝑐) ∫

𝜃/𝑐

0
exp(−𝛼(Δ𝑡))dΔ𝑡 (B.8)

= 𝑐 ⋅
1 − exp(−𝛼𝜃/𝑐)
1 − exp(−𝛼𝜃/𝑐)

(B.9)

= 𝑐 (B.10)

Therefore, the (linearly decoded) output of the integrate-and-fire neuron is given by a rectified
linear function ̄𝑧IF(𝑐) = max(0, 𝑐) of the constant input 𝑐.

Decoding error of integrate-and-fire spike-trains

Given 𝑧IF(𝑡) and ̄𝑧IF(𝑐), we can similarly calculate the expected root-mean-squared error
(RMSE) of the IF neuron.

MSEIF(𝑐) =
1
𝜃/𝑐 ∫

𝜃/𝑐

0
(𝑧IF(Δ𝑡) − ̄𝑧IF(𝑐))2dΔ𝑡 (B.11)

= 𝑐
𝜃 ∫

𝜃/𝑐

0
𝑧IF(Δ𝑡)2dΔ𝑡 − ( ̄𝑧IF(𝑐))2 (B.12)

= 𝑐𝛼2𝜃
(1 − exp(− 𝛼𝜃

𝑐 ))
2 ∫

𝜃/𝑐

0
exp(−2𝛼Δ𝑡)dΔ𝑡 − 𝑐2 (B.13)

=
𝑐𝛼𝜃(1 + exp(− 𝛼𝜃

𝑐 ))

2(1 − exp(− 𝛼𝜃
𝑐 ))

− 𝑐2 (B.14)

= 𝑐𝛼𝜃
2

coth(𝛼𝜃
2𝑐

) − 𝑐2 (B.15)

RMSEIF(𝑐) = √
𝑐𝛼𝜃
2

coth(𝛼𝜃
2𝑐

) − 𝑐2 (B.16)

lim
𝑐→∞

MSEIF(𝑐) =
𝛼2𝜃2

12
⇒ lim

𝑐→∞
RMSEIF(𝑐) ≈

𝛼𝜃
√12

(B.17)

The last equation shows, that in the limit of relatively high firing rates (which we typically
assume when talking about rate coding) the RMSE only depends on the product 𝛼𝜃 and
becomes independent of 𝑐. To reduce the error, we have to either use a slower kernel with
smaller 𝛼 or lower the threshold 𝜃.
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A different way to interpret this result is to consider that in the steady-state, the filtered
spike-train makes a jump of fixed magnitude 𝛼𝜃 after each spike and then relaxes back to
the same initial value 𝑧0 before spiking again. The higher the firing rate is, the more this
exponential relaxation looks like a linear decrease, and the more the filtered spike-train
looks like a saw-tooth wave. If we were to estimate the stationary distribution of the error
that results from sampling the filtered signal 𝑧IF at a random point in time, the residual 𝑟
would then be uniformly distributed in the range [𝑐 − 𝛼𝜃/2, 𝑐 + 𝛼𝜃/2] with mean value 𝑐 and
standard deviation 𝛼𝜃/√12. We will make use of this probabilistic perspective for comparing
the information content of various encodings in appendix B.3.

Activation function of leaky integrate-and-fire neurons

Leaky integrate-and-fire (LIF) neurons are very similar to integrate-and-fire neurons, but the
integrator is replaced by a first-order low-pass filter with leak-rate 𝛼. We will choose the
same 𝛼 for both the LIF neuron and the decoder (which would be another LIF neuron in a
spiking neural network, anyway). LIF neurons also fire periodically in response to constant
inputs, albeit with a lower firing rate that depends non-linearly on the input and the leak-rate
𝛼. We can therefore model the LIF neuron as an IF neuron, whose input signal 𝑐′ = 𝜈(𝑐) has
been nonlinearly transformed. This nonlinear distortion 𝜈 can be characterized as follows:

For constant input 𝑐 and following a reset at time 0, the LIF neuron’s membrane potential
follows the trajectory 𝑐/𝛼(1 − exp(−𝛼𝑡)), i.e. it exponentially approaches 𝑐/𝛼 rather than
growing at constant rate 𝑐 like in the IF neuron. The threshold 𝜃 is reached at time 𝑡 =
−1/𝛼 log(1− 𝛼𝜃/𝑐). An IF neuronwould produce the same periodic firing for a different constant
input 𝑐′:

−1/𝛼 log(1 − 𝛼𝜃/𝑐) = 𝜃/𝑐′ (B.18)

⇔ 𝜈(𝑐) ≔ 𝑐′ = − 𝛼𝜃
log(1 − 𝛼𝜃/𝑐)

(B.19)

For 𝑐 ≫ 𝜃, this has the asymptote 𝑐′(𝑐) ≈ 𝑐 + 𝛼𝜃/2.
This implies, that the LIF neuron has the transfer function is

̄𝑧LIF(𝑐) = ̄𝑧IF(𝜈(𝑐)) = max(0, − 𝛼𝜃
log(1 − 𝛼𝜃/𝑐)

).

If we use the asymptotic approximation, this reduces further to simply

̄𝑧LIF(𝑐) ≈ max(0, 𝑐 + 𝛼𝜃/2).

Decoding error of leaky integrate-and-fire spike-trains

Using the same trick of substituting in 𝑐′ = 𝜈(𝑐) for the input of an IF neuron, we can
also calculate the RMSE of the LIF neuron. But since we are mostly interested in the high
firing-rate regime, where we saw that the RMSE of the IF neuron does not depend on 𝑐 at all,
we get the same approximation for the LIF neuron as well:

RMSELIF(𝑐) ≈
𝛼𝜃
√12

.

B.2 Rate-coding with linear-nonlinear-Poisson neurons

To allow for a direct comparison between the LNP neuron and the (L)IF neuron from ap-
pendix B.1, let’s now imagine that we filter the spiking output of an LNP neuron in response
to a (piece-wise) constant input. The linear-nonlinear-Poisson spiking neuron produces
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stochastic spikes at the (time-varying) rate 𝑠(𝑡) by an inhomogeneous Poisson process, i.e.
the number 𝑁 of spikes in the time-interval [0, 𝑡] is a Poisson random variable with expected
value E[𝑁 ] = ∫𝑡0 𝜆𝑠(𝜏 )d𝜏 = 𝜆(𝑆(𝑡) − 𝑆(0)). Here, 𝜆 is a firing-rate gain parameter that plays
the same role as 1/𝜃 does in the LIF neuron. When decoding the spike-train, we therefore
weigh each spike by 1/𝜆 instead of 𝜃 to compensate for the gain. In contrast to the (L)IF
neuron, the spike-times are not periodically spaced for the LNP neuron, so we have to follow
a slightly different approach to derive the mean and RMSE of the decoded spike-train.

For each of these 𝑁 spikes, the spike times 𝑡𝑘 ∼ Uniform(0, 𝑡) are independent and
identically distributed random variables. If we use the same constant signal 𝑠(𝑡) = 𝑐 and
exponential filter 𝜅 as in appendix B.1, we can compute the effect 𝛾𝑘 of the individual spikes
on the decoded signal, the combined effect Γ of all spikes since time 𝑡 = 0, as well as a couple
of expectations that will be useful later:

𝛾𝑘(𝑡) =
𝛼
𝜆
exp(−𝛼(𝑡 − 𝑡𝑘)) (B.20)

Γ(𝑡) = ∑
0≤𝑡𝑘≤𝑡

𝛾𝑘(𝑡) (B.21)

E[𝑁 ] = 𝜆 ∫
𝑡

0
𝑐d𝜏 = 𝜆𝑡𝑐 (B.22)

E[𝛾𝑘(𝑡)] =
1
𝑡 ∫

𝑡

0

𝛼
𝜆
exp(−𝛼(𝑡 − 𝜏))d𝜏 = 1

𝜆𝑡
(1 − exp(−𝛼𝑡)) (B.23)

E[𝛾𝑘(𝑡)2] =
𝛼2

𝑡𝜆2 ∫
𝑡

0
exp(−𝛼(𝑡 − 𝜏))2d𝜏 = 𝛼

2𝑡𝜆2
(1 − exp(−2𝛼𝑡)) (B.24)

E[Γ(𝑡)|𝑁 ] = 𝑁E[𝛾𝑖(𝑡)] =
𝑁
𝜆𝑡
(1 − exp(−𝛼𝑡)) (B.25)

E[Γ(𝑡)] = E[𝑁 ]E[𝛾𝑖(𝑡)] = 𝑐(1 − exp(−𝛼𝑡)) (B.26)

With these results, we can finally derive the decoded signal and its expected value:

𝑧LNP(𝑡) = 1/𝜆(𝜅 ∗ 𝜒)(𝑡) (B.27)

= ∑
−∞≤𝑡𝑘≤𝑡

𝛾𝑘(𝑡) (B.28)

= 𝑧LNP(0) exp(−𝛼𝑡) + Γ(𝑡) (B.29)

E[𝑧LNP(𝑡)|𝑁 ] = E[𝑧LNP(0)] exp(−𝛼𝑡) + E[Γ(𝑡)|𝑁 ] (B.30)

E[𝑧LNP(𝑡)] = E[𝑧LNP(0)] exp(−𝛼𝑡) + E[Γ(𝑡)] (B.31)

= E[𝑧LNP(0)] exp(−𝛼𝑡) + 𝑐(1 − exp(−𝛼𝑡)) (B.32)

We can solve the last equation easily by using the fact that the filtered signal (and hence its
expectations) must be time-shift-invariant, i.e. E[𝑧LNP(𝑡)] = E[𝑧LNP(0)]. For the mean value
̄𝑧LNP(𝑐) of the decoded signal in response to constant input 𝑠(𝑡) = 𝑐, we thus get:

̄𝑧LNP(𝑐) = E[𝑧LNP(𝑡)] = 𝑐 (B.33)

Filtering an LNP neuron’s spike-train thus also produces an unbiased estimate of its (constant)
input.

Calculating the RMSE for the LNP neuron is more difficult, because it involves a random
number of spikes 𝑁 as well as the random times of each individual spike. But we can use the
law of total variance and apply the same trick as above, i.e. enforcing that the MSE must be
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time-shift-invariant:

Var[𝑧LNP(𝑡)|𝑁 ] = Var[𝑧LNP(0) exp(−𝛼𝑡) + Γ(𝑡)] (B.34)

= Var[𝑧LNP(0) exp(−𝛼𝑡)] +Var[Γ(𝑡)] (B.35)

= Var[𝑧LNP(0)] exp(−2𝛼𝑡) + 𝑁Var[𝛾𝑖(𝑡)] (B.36)

MSELNP(𝑐) = Var[𝑧LNP(𝑡)] (B.37)

= E(Var[𝑧LNP(𝑡)|𝑁 ]) +Var(E[𝑧LNP(𝑡)|𝑁 ]) (B.38)

= E(Var[𝑧LNP(0)] exp(−2𝛼𝑡) + 𝑁Var[𝛾𝑖(𝑡)]) +Var(E[𝑧LNP(0)] exp(−𝛼𝑡) + 𝑁E[𝛾𝑖(𝑡)])
(B.39)

= Var[𝑧LNP(0)] exp(−2𝛼𝑡) + E[𝑁 ]E[𝛾𝑖(𝑡)2] + (Var(𝑁 ) − E[𝑁 ])E[𝛾𝑖(𝑡)]2

(B.40)

= Var[𝑧LNP(0)] exp(−2𝛼𝑡) + E[𝑁 ]E[𝛾𝑖(𝑡)2] (B.41)

Var[𝑧LNP(0)] = Var[𝑧LNP(𝑡)] ⇔ MSELNP(𝑐) =
𝛼𝑐
2𝜆

(B.42)

RMSELNP(𝑐) = √
𝛼𝑐
2𝜆

(B.43)

Since the filtered spike-train of the LNP neuron can be viewed as a sum of independent
and identically distributed random variables, we can assume that the distribution of the
membrane potential (for a sufficiently high firing rate) approaches a normal distribution
due to the central limit theorem. In contrast to the (L)IF neuron, the RMSE hence increases
proportionally to √𝑐! We will make use of this in appendix B.3.

B.3 The entropy of LIF and LNP encoding

Let’s assume as in appendices B.1 and B.2 that 𝑐 ≫ 0, so that we may assume a Gaussian
distribution of errors when decoding the LNP neuron’s output and a uniform distribu-
tion for the LIF neuron. The entropy of a Gaussian distribution with standard-deviation
RMSELNP(𝑐) = √

𝛼𝑐
2𝜆 is 𝐸𝜎Gauss = 1/2 log(𝜋𝑒 𝛼𝑐𝜆 ) and the entropy of a uniformly distributed

random variable on the interval [0, 𝛼𝜃] is 𝐸𝜃Uniform = log(𝛼𝜃). Therefore, measurements of

the two neurons’ firing rates are similarly informative if 𝐸𝜎Gauss = 𝐸𝜃Uniform, i.e. if 𝜃 = √
𝜋𝑒𝑐
𝛼𝜆 .

Since for a constant signal, the mean firing rate 𝑟LNP of the LNP neuron scales linearly with
𝜆 whereas the mean firing rate 𝑟LIF of the LIF neuron scales linearly with 1/𝜃, we can see that

in order to reach similar performance, we have to have 𝑟LIF ∝ √
𝛼𝑟LNP
𝜋𝑒𝑐 .

B.4 Spike-coding under metabolic constraints

B.4.1 Maximizing information-rate under metabolic constraints

Following the procedure already outlined in section 5.2, we can find the optimal distribution
of firing rates 𝑌 that maximizes the information-rate under certain metabolic constraints.
For example, we might want to keep the expected (RMS) error below some limit 𝜃error, and
the energy cost below the limit 𝜃cost. The optimal firing rate distribution must then be of the
form:

𝑝(𝑦) = exp(𝜆01𝑅(𝑦) + 𝜆1cost(𝑦) + 𝜆2error(𝑦)),

and the optimal coefficients of the distribution 𝜆∗ = (𝜆∗0 𝜆∗1 𝜆∗2)
𝑇
can be found by opti-

mization of:
𝜆∗ = argmax

𝜆
(𝜆𝑇𝜃 − ∫

𝑅
𝑝(𝑦)d𝑦) subject to 𝜆1, 𝜆2 ≥ 0,
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where 𝑅 = [0, 𝑅max] is the range of admissible firing rates and 𝜃 = (1 −𝜃cost −𝜃error)
holds the constraints we wish to enforce. ¹ In general, it might be difficult to derive a closed- 1 The first term 1 and corresponding

coefficient 𝜆0 originate from the con-
straint that the distribution of 𝑌 has to
be normalized over 𝑅, the other two
from the metabolic constraints.

form solution for this, but if we are for instance willing to assume that (a) the firing rate is
bounded, (b) the cost increases linearly with the rate and (c) RMSE is (almost) independent
of 𝑦 (as is the case for the (L)IF neuron), then the equation above reduces to a truncated
exponential distribution! ² 2 If the cost constraint is redundant,

this simplifies further to a uniform
distribution.

B.4.2 Maximizing metabolic efficiency

While optimizing the through-put of a neuron seems reasonable from an information bottle-
neck perspective, there is convincing evidence that (some) biological neurons appear to be
optimized for metabolic efficiency instead, firing at rates as low as two spikes per second
and with an information content as high as 5.6 bits per spike (see e.g. chapter 4 of [7]). This
may be much less than the maximum bit-rate that a single neuron could deliver in principle,
but it appears to make optimal use of the invested energy. To find the optimal firing rate
distribution 𝑃∗𝑌 , we can proceed as follows: If we again use cost(𝑦) to denote the power
required for maintaining a firing rate 𝑦, the cost associated with the firing rate distribution
𝑃𝑌 is cost𝑃𝑌 = E𝑃𝑌[cost(𝑦)]. We can then express the metabolic efficiency of the neuron

𝜀 =
𝐼𝑃𝑌

cost𝑃𝑌
where 𝐼𝑃𝑌 denotes the information-rate of the neuron for firing rate distribution 𝑃𝑌.

If the cost was independent of the firing rate distribution (i.e. if generating spikes required
no additional energy), then most the “powerful” encoding from above would also be the
most metabolically efficient. But if we make the more realistic assumption, that each spike
costs a finite amount of energy 𝑒spike in addition to the static power 𝑐𝑜𝑠𝑡static required to keep
the neuron operational, the metabolic efficiency is optimized by the distribution

𝑃∗𝑌 = argmax
𝑃𝑌

𝐼𝑃𝑌
E[𝑌 ] ⋅ 𝑒spike + coststatic

.

If we only consider exponential distributions and assume a one-to-one deterministic
encoding by the neuron, then the information rate (which is then proportional to the entropy
of 𝑌) is just a function of the expected firing rate 𝐼𝑃𝑌 ∝ log2(E[𝑌 ]) + 1, and hence 𝑃∗𝑌 becomes
a function of just the mean firing rate, as well. In this case, we see that the metabolic efficiency
would be maximized for

E[𝑌 ] =
𝛾

𝛾𝑊 (2 exp(−1))
, where 𝛾 ≔ coststatic/𝑒spike and 𝑊 is Lambert’s function.

Note that this gives us a finite, optimal firing rate for the neuron, even if we impose no hard
limits on either the energy constraint or the maximum firing rate.
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In the following, I have compiled relevant publications for the consideration by the PhD-
Committee. The documents are included “as-is” in the exact form they were published or
submitted for publishing (except, of course, for the added page numbers and a disclaimer in
the margins). The documents are included for evaluation and archiving purposes only and
are not meant for further distribution.
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Abstract. Bistable perception describes the phenomenon of perception
alternating between stable states when a subject is presented two incom-
patible stimuli. Besides intensive research in the last century many open
questions remain. As a phenomenon occurring across different perceptual
domains, understanding bistable perception can help to reveal properties
of information processing in the human brain. It becomes apparent that
bistable perception involves multiple distributed processes and several
layers in the hierarchy of sensory processing. This observation directs
research towards general models of perceptual inference and to the ques-
tion whether these models can account for the spontaneous subjective
changes in percepts that subjects experience when shown rivalling stim-
uli. We implemented a recurrent generative model based on hierarchical
conceptors to investigate its behaviour when fed an ambiguous signal
as input. With this model we can show that (1) it is possible to obtain
precise predictions about the properties of bistable perception using a
general model for perceptual inference, (2) hierarchical processes allow
for reduction in prediction error, (3) random switches in the percept
of the network are due to noise in the input and (4) dominance times
exhibit a gamma distribution of stimulus dominance times compatible
with experimental findings in psychophysics. Code for the experiments
is available at https://github.com/felixmzd/Conceptors.

Keywords: Bistable perception · Predictive coding · Conceptors

1 Introduction

Bistable perception arises when a sensual modality is presented with a stimulus
that is too ambiguous to be resolved by a unique interpretation. While there
are many examples of visual stimuli that evoke bistable perception such as the
Neckar cube [14] or binocular rivalry [15], the phenomenon has also been observed
for other sensual modalities such as olfaction [16], audition [7] and the tactile
sense [5].
c© Springer Nature Switzerland AG 2019
I. V. Tetko et al. (Eds.): ICANN 2019, LNCS 11731, pp. 24–34, 2019.
https://doi.org/10.1007/978-3-030-30493-5_3
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As such a general phenomenon, bistable perception seems to be a direct result
of properties inherent in the information processing of the human brain.

The common characteristic of bistable perception across sensual modalities
are spontaneous alternations in percept between the interpretations of the stimu-
lus while the presented stimulus itself remains constant. The exact timepoints of
change of the percept can not be predicted and are apparently random. However,
the distribution of dominance time durations was shown to be relatively constant
across examples of bistable stimuli and resembles a gamma like or right-skewed
normal distribution [3].

Several models have been proposed that attempt to account for the estab-
lished results on the timing of dominance intervals. Some also take more recent
evidence on the distributed neural processing of rivalling stimuli into account [1].
A model for the condition of binocular rivalry by Freeman consists of four parallel
visual channels, two driven by the left eye and two by the right. Therein, the suc-
cession of cortical levels is represented by several consecutive processing stages
for each channel [8]. Dayan describes a model wherein the alternation between
the percepts can be generated by competition between top-down cortical expla-
nations for the inputs instead of direct competition between the inputs [6]. In a
similar spirit, Hohwy et al. offer an explanation of the binocular rivalry condition
in terms of predictive coding [10].

While computational models accurately predict the properties of bistable
perception the often lack applicability to other perceptual processes [4]. Here,
we present a model based on the hierarchical random feature conceptor archi-
tecture proposed by Jaeger [12]. Hierarchical random feature conceptors have
successfully been applied to denoising tasks, which presents a core function of
general perception. Conceptors in general have been proposed as a solution to
the neuro-symbolic integration problem by implementing a filter mechanism on
the hidden state dynamics of echo state networks [11]. A conceptor is inserted in
the state update rule of the echo state network. It suppresses activity in atypical
directions in the network dynamics while activity in typical directions remains
unaffected. Typicality of the directions can in this setting be determined by
observed activity during training under the same input pattern.

2 Experimental Setup

In order to simulate the condition of bistable perception, we utilized the hier-
archical random feature conceptor network, as it was presented in “Controlling
recurrent neural networks by conceptors”, Chap. 3.16, by Jaeger in 2014. The
network consists of three identical echo state networks arranged in a hierarchy of
three levels. This echo state network was chosen to consist of 100 neurons with
a feature space consisting of 700 neurons.

2.1 Learning of Prototype Patterns

In preparation to the experimental condition, the echo state network is presented
with the clean signals of two sine waves with periods 13.190045 and 4.8342522
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sampled at integer t, henceforth referred to as sine 1 and sine 2. After the pro-
totype conceptors were learned for the clean signals, a bistable signal composed
out of a superposition of these signals and noise is presented to the network. For
each of the sine waves, the system is run through three periods:

1. For a washout period of 200 timesteps, during which the networks response
starts to be correlated with the driver, no network responses are collected.
Then the system is run in the conceptor adaptation mode for 2000 timesteps,
wherein the prototype conceptor for that pattern is learned. Finally the sys-
tem is run for 600 timesteps with the adapted conceptor in the network state
update loop, and the network’s response is collected.

2. In the following, two learning steps are performed.
(a) The output weights Wout are computed by ridge regression with all col-

lected reservoir states as arguments and the corresponding prototype pat-
terns as targets. The normalized root mean squared deviation (NRMSD)
between the output of the system, utilizing the calculated output weights,
and the prototype pattern is computed.

(b) In the second learning step, the loading, an input simulation matrix D is
obtained. This is done by ridge regression, with the objective to reproduce
the same network activations as they were elicited by the driver, but in
absence of the driver.

3. Subsequently, the success of the learning steps was tested by a recall period.
For every pattern the trained system was run under the respective conceptor
for 200 washout steps. This allows for the adaptation of the network dynamics
to the control of the current conceptor. Afterwards the output of the system
was collected for 200 timesteps and compared to the original prototype pat-
tern.

This describes the setup of one module of the random feature conceptor
architecture with two sine waves of different periods learned. In the hierarchi-
cal random feature conceptor system, three layers of this architecture are bi-
directionally connected. Weight matrices are learned beforehand and are then
shared between layers. Conception weights and inputs evolve independently for
each layer.

Bottom-up and top-down processing is mediated by trust variables that are
adapted based on discrepancies between predicted and actual input in each layer.
The input to each layer is a mixture of predicted input and the signal from the
lower layer, mediated by the trust variable.

There exists a bottom-up as well as a top-down flow of information. The
output of the lower layer is fed to the higher layer, constituting the bottom-up
flow. The top-down flow is the influence of conception weights of a higher module
on a lower one. Both are mediated by the trust variables.

The top-down pathway influences the conception weights in each layer of the
hierarchy. The top-layer hypothesis is passed downwards in the hierarchy. In each
of the lower levels 2 and 1 an autoconceptor adaptation process is taking place,
yielding layer internal conception weight vectors. These are linearly mixed with
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the conception weight vector from the next higher layer, using the trust variables
as mixing coefficients. The topmost layer is a special case, as there is no layer
above which can have any influence on its conceptor. By design its conceptor is
constrained to be a disjunction of prototype conceptors of the two sine waves.

The bottom-up pathway influences the input to the higher levels 2 and 3.
These levels have a self generated input simulation signal. Additionally to this,
they receive the output from the next lower layer. Again, the trust variables
determine how much influence the bottom-up pathway has against the self gen-
erated input simulation signal by serving as mixing coefficients.

2.2 Experiments with the Bistable Stimulus

In addition to the hierarchical random feature architecture we introduced a
feedback loop from the top level hypothesis to the input of the system. This
feedback loop suppresses those parts of the input signal that can be explained
or predicted under the current hypothesis of the system.

Fig. 1. A sample of the effective, ambiguous input, with influence from the feedback
loop. Up to timepoint 62 the signal consists of sine wave 1 and noise, thereafter of
sine wave 2 plus noise. The hypothesis that sine wave 2 is the source in the signal
was winning until timestep 62. Therefore the signal of sine wave 1, which is not pre-
dictable under this hypothesis, remained in the input signal. From timestep 62 on the
same reasoning holds, with hypothesis 1 being the winning hypothesis and sine wave
2 remaining as unpredicted residuum in the input signal.

The input to the hierarchical architecture at the lowest level is the sum of the
two irrational sine patterns and normally distributed noise, with the signal to
noise ratio of 1 with respect to the clean sine wave input. The noise was found
to be necessary to push the system into an oscillating regime [2]. When the
system settles on a hypothesis on the highest level of the hierarchy, the part of
the input signal that can be explained by that hypothesis is subtracted from the
input to the lowest level of the hierarchy. Importantly, we defined the winning
hypothesis by the procedure of ‘the winner takes it all’. This affects the input
drastically as the complete clear signal that belongs to the winning hypothesis is
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subtracted from the input. Thereby the effective input to the system is usually
a composition of noise and one signal source. A sample of this effective input is
shown in Fig. 1.

The system is run for 50.000 timesteps. Over the course of this simulation the
hypothesis of the system about the source of the driver is collected on all three
levels of the hierarchy. Moreover the dynamics of the trust variables that oper-
ate between the levels are saved. Experiments were recorded using the Sacred
library [9] to ensure reproducibility.

3 Results

Initial learning of the prototype conceptors was performed successfully. The
NRMSD for computing the output weights was 0.0027. The NRMSD per neuron
between the input driven network response and the network response elicited
by D was 0.0005 on average per neuron. Both learned sine wave patterns were
recalled. After the correction of an inevitable phase shift, the NRMSD for the
sine 1 was 0.025 and the NRMSD for sine 2 was 0.059.

Fig. 2. Developments of hypotheses and trusts in the network. Displayed are the first
3000 simulated timesteps. The three topmost plots show the evolution the of hypothesis
vectors for the three levels of the hierarchy. The bottom-most plot shows the trust
variables operating at the intersection of the levels of the hierarchy. For details see the
Results section.
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Fig. 3. Distribution of dominance times, separately for each sine wave. Both histograms
were fit to a gamma distribution function (black line). The distribution of dominance
times in the simulation is similar to data acquired from experiments in humans, when
they were viewing rivalling stimuli.

Figure 2 shows the results of then presenting the combined signal for the first
3000 out of the total of 50000 simulated timesteps. A few observations can be
made: On level 1 the hypotheses are not yet really differentiated with relatively
long periods where both hypotheses are almost equally likely. On level 2 this
differentiation is far better, surpassed only by a little in layer 3. Moreover, a
small delay in the processing of the system can be observed. Comparing level 2
and level 3 hypotheses, it can be seen that level 3 reacts similar but has a delay
on the order of 100 to 300 timesteps with regard to level 2. Between level 1 and
level 2 this is less obvious, but can also be observed. It is also far more difficult
to see, because on level 1 the structure of the hypothesis peaks is still very
different compared to the higher levels. Most importantly an oscillation between
the hypotheses can be observed on all levels. The top level hypothesis vector can
be interpreted as the perception of the system, switching from one sine wave to
the other, back to the first one, and so on. This resembles the perception human
observers have when they are viewing rivalling stimuli. The bottommost plot
displays the trust variables that operate between the levels. They both stay at
a high level during the stimulation, indicating that the system is confident to
generate the correct pattern most of the time. Especially for the trust variable
between level 1 and 2 several small dips can be observed. These can correspond
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to a switch in the input signal due to a change in hypothesis on the top level.
The system realizes that its prediction does not match the input pattern as
much as it would, if it were to change its hypothesis and conceptor. It therefore
operates shortly in an input driven manner to find the optimal input matching
hypothesis and settles again, only to be tempted to change again as soon as the
new hypothesis affects its input.

We calculated the distribution of dominance times on the data of the third
level hypothesis vector. We measured normalized dominance times in terms of
simulated time steps t, dividing all dominance times by the mean dominance time
t. We in particular calculated the normalized dominance time distribution for
each sine wave separately, to not get a mixed distribution that is skewed to either
side because the patterns have different signal strengths. Both distributions are
plotted in Fig. 3. The distributions show similarity to the results of Levelt [13].
As Levelt did, we fit a gamma distribution to the data. The gamma pdf can be
parameterized with shape k and scale θ as

f(t; k, θ) =
tk−1e− t

θ

θkΓ (k)

We estimated the parameters k and scale θ of the distribution, which yields the
following equation of the fit for sine 1

f(t; 3.179, 0.315) =
t3.179−1e− t

0.315

0.3153.179Γ (3.179)
and for sine 2 respectively

f(t; 7.237, 0.138) =
t7.237−1e− t

0.138

0.1387.237Γ (7.237)

3.1 Stability

We find the phenomenon of bistable perception in our architecture to occur
across different input patterns. We tested our architecture with different com-
bination of sine waves and a combination of random periodic patterns and sine
waves. We found the hypotheses at the highest level to consistently switch
between the two presented patterns for all tested pattern combinations. We
also found the distributions of dominance times to consistently form gamma-
like right-skewed distributions, that resemble the distributions observed in psy-
chophysics experiments.

However, the exhibition of the phenomenon is dependant on the right inter-
play between input pattern, aperture and initialization.

4 Discussion

We used the hierarchical random feature conceptor as a model for bistable per-
ception, thereby providing an application of the conceptor architecture in a cog-
nitive modeling task.
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4.1 Comparing Dominance Times to Levelt’s Work

The distribution of dominance times that we obtained from the simulation is
remarkably similar to the dominance time distribution of Levelt’s work in the
60 s, which is shown in Fig. 4. Across different combinations of input pattern,
we especially find that normalized dominance times concentrate in the range
between zero and three. Also, we consistently observe a right skewed distribu-
tion of dominance time durations, which is a well established result in research
on bistable perception across modalities. These results encourage further inves-
tigations in how far the hierarchical random feature conceptor architecture is a
suitable model for general human perception.

Fig. 4. Distribution of dominance times for binocular rivalry as reported by Levelt [13].
This figure is reproduced from Brascamp et al. [4].

4.2 Bistable Perception

In our simulation the system has learned two prototype patterns. These two pat-
terns are “the world” for the system. Besides the driving input itself, its internal
representation of the prototype patterns is the only information it has access to
during runtime. As the system is also not adapting or learning any new patterns
during the course of the simulation, the only hypothesis it can make up involve
the two prototype patterns. The simulation of the bistable perception shows that
the system adapts its hypothesis about the current input in accordance to the
input. On the level of the hypotheses it shows an alternating behaviour, just as
it is the key observation in bistable perception in humans. Insofar we have a
working example of a challenging situation for a perceptual system. The system
has only the option to make up hypotheses from the two prototype pattern it
knows. It can, however, settle on a mixture of these, maintaining for example the
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hypothesis that a mixture of the prototype patterns causes the current sensory
input. This is in fact the case, if the system is run without the effect of the
feedback loop. In many situations this is highly desirable and it is a research
project in its own right in how far conceptor combinations really are able to
combine concepts. Nevertheless in the special case of humans viewing rivalling
stimuli, the hypothesis of a mixture of both stimuli is a priori highly unlikely.
For the concrete example of binocular rivalry, face-house compounds do usually
not appear in the world. We reflect this low prior probability for the compound
hypothesis by subtracting the winning hypothesis from the input. This design
choice is supported by a strong effect of the prediction of the system on the actual
perception. The predicted signal is completely explained and therefore can be
subtracted from the input signal. In the original approach we tried to take the
bare prediction of the system on the top layer and subtract that from the input.
This turned out to be not suitable for our attempt, as reservoir systems as we
use them produce inevitable phase shifts of the generated signal versus the input
signal. Moreover we faced the above mentioned problem of the system believing
that the current input is a mix of both signals.

4.3 Relation to Predictive Error Minimization

Hohwy, Roepstorff and Friston [10] utilize the predictive error minimization the-
ory (PEM) to explain the phenomenology of a specific instance of bistable per-
ception, namely binocular rivalry. Here, we present their analysis of the binocular
rivalry condition in terms of the predictive error minimization scheme and relate
it to our model.

According to PEM theory, the brain tries to find the best matching hypothesis
that could be the cause for the observed data. When the human brain is exposed
to a binocular rivalry condition with a picture of a house and a picture of a face
presented to separate eyes at the same time the brain of a subject might settle on
the hypothesis that a house caused the visual stimulation. Under this hypothesis,
the brain, as a hierarchical generative model, would predict some features of a
house which will match with parts of the sensory data. The sensory drive that is
generated by the face would remain as a residuum and as a prediction error that
is not accounted for by the prediction of the brain. This error is on about the same
order of magnitude as the explained data, namely the part of the stimulus that
belongs to the house. Due to this balance of information content between both
parts of the stimulus and due to noise, the hypothesis that the face generated the
sensory drive would overtake. This oscillation describes the alternation between
different percepts that is observed when humans view rivalling stimuli.

The hierarchical random feature architecture tries to minimize prediction
error by selecting the best hypothesis in order to predict the incoming sensory
data. The residuum of the incoming data which can not be explained is called
the prediction error. In contrast to PEM theory, our proposed architecture does
not signal the prediction error upwards in the hierarchy, but a denoised version
of the sensory input. ‘Denoised’ means in this context that parts of the signal
which are not predictable under the current hypothesis are regarded as noise and
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are suppressed. This, in fact, leads to less prediction error on higher layers of the
hierarchy, as the prediction error is suppressed by each layer. This mechanism is
therefore actually minimizing prediction error, but in a slightly different fashion
than the usually in predictive coding proposed upwards signalling of the residual
signals or prediction errors. Minimizing prediction error just by suppressing all
signals that can not be predicted on its own does not seem very useful. But
this process is aided by a general assessment of fit of all prototype patterns
to the input signal. This is inherent in the conceptor mechanism. Therefore
the mechanism for prediction error minimization is different in the hierarchical
random feature conceptor as compared to the usual notion in predictive coding.
This issue is still in debate, also for the predictive coding research community,
as we are not aware of any clear cut evidence in favour of and against other
possible realizations of error signalling.

5 Conclusion

We implemented a recurrent generative model based on hierarchical conceptors
to investigate its behaviour with regards to bistable perception. We were able
to show that the network exhibits random switches in its percepts. The distri-
bution of dominance durations furthermore resemble well established findings
from psychophysical experiments on bistable perception in humans. Moreover,
the hierarchical organization and the message passing between the levels of the
hierarchy allows for noise suppression and prediction error minimization. There-
fore, we were able to construct an accurate model for bistable perception that is
based on a model for general perception and is applicable to other tasks. Over-
all, we conclude that the hierarchical random feature conceptor architecture is
a promising model for general human perception. Further work has to be done
in order to investigate whether the architecture can account for more perceptual
phenomena.
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Computational Elements 
of Circuits

Johannes Leugering, Pascal Nieters, and Gordon Pipa

Abstract

Information  processing in the brain is  implemented across several temporal and spatial 
scales by populations of neurons. This chapter addresses how single neurons, small net-
work motifs, and larger networks, in which emergent dynamics are largely shaped by 
the connectivity of the system, contribute to this processing of information.  Computa-
tion is defi ned  as a semantic mapping; that is, it is the process by which representations 
of external (e.g., stimulus-driven) or internal (e.g., memories) information change. A 
feature specifi c to neuronal computation is that mappings are mostly local, constrained 
by connectivity patterns between neurons. This implies that complex mappings from 
local information onto representations that are highly relational and abstracted, and 
which rely on information between distant parts of the system, require mechanisms that 
can bridge, bind, and integrate pieces of information across large scales. An overview 
of this process in the nervous system is delineated: Local information processing is 
described at the level of individual neurons and small motifs. Emergent phenomena 
are addressed that implement information processing across large recurrent neuronal 
populations. Finally, an omnipresent but mostly ignored feature of neuronal systems, 
 delay-coupled computation, is described.

Information Processing in Single Neurons and Populations

An understanding of how information is processed in neural systems begins 
with a consideration of how an individual neuron perceives and processes in-
formation, before extending this scope gradually to larger systems. Our goal 
in this chapter is to present a concise, abstract view of computation in neural 
systems, understood to be key to a meaningful change in the representation of 
information. In the interest of brevity, the biological complexity of neurons 
and networks (e.g., the role of specifi c ion channels or the potential infl uence 
of glia cells and neuromodulators) will not per se be addressed.
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A Stochastic Process Linear-Nonlinear Neuron Model

From the perspective of the  linear-nonlinear (LN) model, a neuron is a com-
putational unit that receives a multivariate time-varying input signal through 
its synaptic inputs and generates a univariate time-varying output signal. This 
mapping from input to output signals is near instantaneous (at least time-in-
variant), as the neuron itself is assumed to have, at most, a very limited internal 
memory1 and be subject to noise.

In the mathematical framework of stochastic processes, a neuron can thus 
be concisely described as a nonlinear, causal, time-invariant operator that maps 
a multivariate stochastic process onto a univariate stochastic process. We make 
several simplifying assumptions that result in a convenient class of neuron 
models (Ostojic and Brunel 2011; see also Figure 11.1):

• The neuron’s operation can be modeled as a leaky integrator or, even 
simpler, an instantaneous input-output mapping.

• It is composed of a linear operator, which reduces the multivariate in-
put arriving at different synapses along the dendritic tree to a univariate 
input to the neuron’s soma, followed by a nonlinear transformation.

• The linear operation is parameterized by synaptic weights, which can 
be positive or negative.

• The nonlinear transformation, which we refer to as the activation func-
tion or just nonlinearity, is a monotonically increasing, (locally) differ-
entiable and bounded function.

While the activation could be further used in a spike generation process as an 
instantaneous fi ring rate, we treat it here as the neuron’s continuous state or 
output. Each neuron in a population independently processes its own input 
(which may be correlated to other neurons’ inputs), and its state provides 
one component of the entire population’s multivariate state. The computa-
tion carried out by a population of neurons, mapping a multivariate input 
signal onto a multivariate state, must thus arise component-wise from the 
computations realized in the individual neurons. Each neuron, however, is 
limited to those operations which can be realized by a LN model under the 
above constraints.

To better understand the capabilities and limitations of this class of models, 
it helps to analyze them from a  machine  learning perspective, where such mod-
els commonly appear under different guises and names.

1 The exception to this rule is found in plasticity mechanisms, which we assume to operate on 
a much slower, separate timescale than that of the output signal, and thus they can be treated 
as virtually constant in this context. The commonly made assumption of near instantaneous 
operation of the neuron further presumes that slower active dendritic processes do not substan-
tially contribute to computation, which can be called into question and may turn out to be an 
overly simplistic perspective.
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LN Models in Machine Learning

Using a Heaviside function for the nonlinearity, LN models appear in  ma-
chine  learning in the form of linear hard-margin classifi ers, such as the clas-
sical  perceptron (Rosenblatt 1958), linear support vector machines (Hearst et 
al. 1998), or depth-one decision trees (so-called “decision stumps”; Criminisi 
et al. 2012). With continuous nonlinearities, such as the logistic function, 
these models can be used as soft-margin classifi ers and regressors, as in gen-
eralized linear models (GLMs) (McCullagh and Nelder 1989), where the 
nonlinearity is used to relate a linear combination of input features to the ex-
pected value of the (task-specifi c) label associated with the data. To improve 
performance, multiple instances of such models can be combined laterally 
to form an ensemble, used in a boosting procedure or stacked hierarchically, 
like the layers of an  artifi cial neural  network (Hopfi eld 1988) or the levels of 
a decision tree.

Input
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Adaptive
synapses

Membrane
potential

Adaptive
nonlinearity

Intensity
process

Input
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Membrane potential
distribution

Intensity
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Figure 11.1 A model neuron receives a linear combination of multiple time-varying 
stochastic processes that are scaled by adaptive, synaptic weights and integrated into 
the neuron’s membrane potential. By sensing some suffi cient statistics of the membrane 
potential, the neuron’s nonlinearity can be adjusted to achieve an activation (or inten-
sity) with desirable statistical properties. Assuming stationarity of the input processes, 
the neuron’s nonlinearity can be determined by the desired mapping from the univariate 
membrane potential distribution to an intensity distribution. Adapted from Leugering 
and Pipa (2018).
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 Computation in this context simply refers to the ability of the model to 
encode specifi c task-relevant information about its inputs into its output. The 
same claim has been made for individual biological neurons, as well as whole 
layers of neurons in deep networks under the “information bottleneck” prin-
ciple. The deceptively simple argument is that each neuron (or each layer of a 
network, respectively) is presented with a high-dimensional input signal that 
carries task-relevant, as well as irrelevant, information, and, in a noisy environ-
ment with limited capacity to transmit information, ought to transform it into 
an informative low-dimensional output signal (Becker 1996).

Supervised Learning

In a  supervised setting,  where the desired output of the model is known at 
all times, the extraction and transmission of task-relevant information with 
simultaneous suppression of task-irrelevant “noise” represents a form of lossy 
compression. In multilayer networks, backpropagation can provide a super-
vised error signal for each layer and ultimately each neuron, thus allowing it 
to locally solve a lossy compression problem, which has been hypothesized 
as the theoretical mechanism underlying the surprising success of  deep neural 
 networks (Shwartz-Ziv and Tishby 2017).

Unsupervised Learning

The concept  and potential mechanisms of  error backpropagation in biological 
neural networks, however, are controversial, and the existence of supervised 
target signals may be called into  question altogether. In the absence of super-
vision, the  information bottleneck principle can be restated as the objective 
for each neuron to simply encode its inputs into its output in the most infor-
mative way possible, since it cannot distinguish task-relevant from irrelevant 
information.

The information encoding of the output signal is refl ected in the fi ring 
statistics, with heavy-tailed fi ring rate distributions corresponding to sparse 
spiking codes, and narrowly peaked distributions corresponding to tonic fi ring 
or bursting codes. By driving synaptic plasticity, this can, in turn, shape the 
topology of synaptic connections and lead to the formation of specifi c motifs, 
thus allowing a population of neurons to implement task-relevant computation 
without supervision.

Under the biological constraints imposed on the neuron (e.g., bounded fi r-
ing rates, energy limitations), the mutual information between input and output 
is bounded by the entropy attainable by the output distribution. A common 
objective is thus for the neuron to enforce a maximum  entropy distribution of 
its outputs by appropriately adjusting its nonlinearity, while simultaneously 
tuning its synaptic connection weights to project the multidimensional input 
signal onto the most informative subspace. Equivalently, for a population of 
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neurons, the  information bottleneck objective is to realize a maximum entropy 
joint distribution, such that each marginal distribution of an individual neu-
ron’s output satisfi es the biological constraints.

Unsupervised Learning Application: Independent Component Analysis

As it turns out, this objective fully determines a unique optimal choice of 
nonlinearity for a given family of input distributions and a desired output 
distribution. It also implies that the linear subspaces selected by the neu-
rons’ respective synaptic input weights should correspond to the main in-
dependent components. Consequently, this problem is also referred to as 
 independent component analysis (ICA), a generalization of principle com-
ponent analysis which can no longer be solved by linear methods (Hyvärinen 
and Oja 1998; Triesch 2007).

This intuition transfers seamlessly to a framework of stochastic processes 
(Leugering and Pipa 2018), where a population is tasked with mapping its 
(stationary) multivariate input process onto a multivariate output process, with 
a joint distribution composed of independent components with given marginal 
distributions. By factoring the population’s joint distribution into its marginal 
distributions and a copula function, it becomes apparent that this objective can 
be achieved through the interaction of two distinct mechanisms:

1. The copula function captures all of the dependency structure pres-
ent in the joint distribution and depends only on the choice of syn-
aptic input weights of the population; thus it can be adjusted by 
synaptic plasticity.

2. The marginal distribution of each neuron’s output can be enforced 
purely by an appropriate choice of nonlinearity; thus it can be ad-
justed by intrinsic plasticity.

Since all of the information required to solve the ICA problem is available 
locally to the neurons or their synapses, it can be solved by the LN model dis-
cussed above using simple, biologically plausible mechanisms of intrinsic and 
synaptic plasticity in a time-continuous, noisy setting.

Using motifs of several laterally inhibiting neurons, different independent 
components can be found, leading to a highly informative, multivariate output 
signal. As shown in Figure 11.2, such a structure can be used to learn, in an un-
supervised fashion, to classify MNIST images with just a handful of neurons. 
For an in-depth discussion of this result, see Leugering and Pipa (2018).

Computation in Networks Using Emergent Properties

The cerebral cortex is a highly distributed system with reciprocal connec-
tions that shape neuronal activity through self-organizing and that can create 
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coherent states able to encode representations of sensory objects, decisions, 
and programs for motor acts (Uhlhaas et al. 2009). The topology of the connec-
tivity shares properties with small world networks having no singular center 
where all information converges (Gerhard et al. 2011). This raises questions 
of how the numerous computations on the level of single neurons are coor-
dinated and bound together to give rise to coherent percepts and actions, and 
how relations between simultaneously represented contents can be encoded. 
One option is that  neuronal synchrony can implement both features. Several 
mechanisms have been discussed—for instance mediated by inhibitory syn-
apses, enhanced via gap junctions, induced by motifs of neuronal connectivity 
(Vicente et al. 2008; Pérez et al. 2011; Messé et al. 2018)—that can induce 
neuronal synchronous fi ring even despite long conduction delays. However, 
one of the central challenges that has not been suffi ciently addressed is that the 
mechanism needs to enable the neurons to synchronize and desynchronize in a 
stimulus-specifi c fashion, and thereby to encode relationships.  Noise-induced 
coherence is one such mechanism that was recently demonstrated to produce 
fast, stimulus-specifi c, and biologically plausible  synchronization patterns.

First discussed in complex and excitable systems (Pikovsky and Kurths 
1997), noise-induced coherence is a process that can structure and synchronize 
the activity of the system based on noisy or even unstructured input. The nature 
of noise-induced coherence is that the complex system (the dynamical ele-
ments, e.g., neurons, together with the network topology) defi nes patterns that 
exhibit enhanced coherence if the system is driven by a corresponding motif, 
neuron-specifi c optimal amplitude of unstructured noise. In other words, and in 
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Figure 11.2 A small motif of fi ve neurons receives feedforward excitation from 28 × 
28 neurons, representing pixels of visual inputs. Images from the MNIST database are 
presented successively, while the synaptic weights and each neuron’s nonlinearity are 
adjusted by local synaptic and intrinsic plasticity, respectively. Only the combination of 
both learning mechanisms leads to the (unsupervised) discovery of independent com-
ponents in the input space, corresponding to the average input for each class. Lateral 
inhibition learns to decorrelate the neurons and ensures that different components are 
discovered, reducing redundancy and thus maximizing the information content of the 
motif’s output. Results from Leugering and Pipa (2018).
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respect to neuronal networks, noise translates a pattern of neuron-specifi c fi r-
ing rates into patterns of coherent and synchronized population responses (i.e., 
translation of a neuron-specifi c rate code to a population-based sync code). 
Importantly, this translation is network specifi c, which opens the possibility 
that the expression of synchronous events is not only driven by the stimulus-
specifi c rate pattern but also by the network, and its structure is shaped by 
neuronal plasticity.

Transformation of Spike Rate Coding to Coherent 
Population Codes via Noise-Induced Coherence

To illustrate the  mechanism and encoding based on noise-induced coherence, 
let us consider an example for the  visual cortex V1. In general, it is known 
that  network structure of cortical networks is at least partially shaped by the 
experience of past activation mediated by neuronal plasticity. For V1, this 
implies that the connection strength horizontal connections in V1 refl ect the 
aggregate statistics of natural visual scenes (Onat et al. 2013); that is, V1 
cells with nearby receptive fi elds are preferentially connected, and specifi -
cally when they select for similar visual stimuli. Figure 11.3a shows a net-
work simplifi ed to such a V1 prototypic connectivity pattern. The system 
receives stimulus-specifi c input described by neuron-specifi c retinal coor-
dinates which match their cortical position (retinotopy) and have a particu-
lar angle (orientation tuning) presynaptic spike rates (i.e., uncorrelated and 
rate-modulated Poisson fi ring). To illustrate the effect of noise-induced co-
herence, we use two kinds of stimuli: one that is open and composed of two 
shorts blocks, and one that is closed and composed of a longer bar. Given the 
 retinotopic mapping, this implies that the activation pattern, in comparison 
to the underlying network, results in different shortest path lengths between 
stimulus-driven cells. Only few of these cells will have direct connections, 
since horizontal connections preferably connect cells with nearby receptive 
fi elds. More generally, the  network connectivity implies a metric for possible 
stimulus patterns. Given this metric, for V1, the shortest path between any 
two responding cells will likely be longer, on average, for a scattered stimulus 
than for a more compact stimulus. As a result, the same cells which receive 
a presynaptic input pattern matching the connectivity of the network (here, 
cells that are part of a continuous patch) exhibit stronger noise-induced co-
herence than others. Such mechanisms can be generalized to more complex 
encoding schemes, depending on the connectivity patterns of the network. 
For example, the well-known orientation tuning of cells in V1, in combina-
tion, and network motifs described by preferred connectivity across cells with 
similar orientation will result in enhanced coherence of neurons that encode 
chains of shorter line segments (see Figure 11.4). In general, noise-induced 
coherence is a mechanism that can measure the similarity between the net-
work connectivity and the stimulus-induced spike rate pattern (Korndörfer et 
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al. 2017). It can therefore be a measure of how well the stimulus matches a 
prior learned by neuronal plasticity and encoded in the  network’s connectiv-
ity. Here the stimulus-induced spike rate refl ects a classical  labeled line code. 
Thus,  spike  synchrony generated by noise-induced coherence carries syner-
gistic information that refl ects to which degree the current stimulus encoded 
by the spike rate is expected, given past stimulus experiences. Such a signal 
could be used early after input onset in a feedforward fashion, for instance, 
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Figure 11.3 (a) Noise-induced coherence for two alternative presynaptic stimuli (red, 
a closed line; green, an open line segment). Coherence is measured between the green- 
or red-highlighted neurons. The only difference is the context given by the stimulus 
drive, which itself is composed of unstructured Poisson noise. The network topology 
is defi ned by nearest neighbor connection matches, and stimuli are matched using  reti-
notopic mapping. (b) Synchrony measure of the pairs of neurons shown in (a) and for 
the two stimulus conditions. Coherence is higher for the compact closed line, since the 
shortest path length between stimulus-driven neurons is smaller for the closed contour. 
(d) This feature is generalized to the amount of scattering of a stimulus; that is, the 
greater the scattering, the larger the shortest path length between neurons, given the 
metric of the underlying network connectivity. The resulting stimulus-induced coher-
ence (c) is the largest for the most compact, and the lowest, for the most scattered 
stimulus. Adapted from Korndörfer et al. (2017).
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to guide attention toward stimuli composed of plausible parts. In contrast to 
many other types of  synchronization, it also does not require, but can be im-
proved by, inhibitory cells (Korndörfer et al. 2017), and it produces fi ring 
patterns that closely resemble in vivo recorded patterns (e.g., Gray et al. 1989; 
Uhlhaas et al. 2009).

Reservoir Computing

Most mechanisms discussed  over the past decades for neuronal  information 
processing require highly structured networks, specifi c types of dynamical 
processes, and very specifi c encoding schemes  of information (e.g., rate code 
versus population spike codes). A frequently used feature of computational 
models is that they rely on  attractor dynamics, which can be trained to imple-
ment specifi c computational features, such as associated memory in  Hopfi eld 
networks (Hopfi eld 1982) or the  winner-takes-all mechanism (Maass 2006) for 
decision making, for example.

Like the  ICA network discussed above, all of these computational models 
implement a clearly defi ned information processing principle and rely on a 
very specifi c type of implementation, in terms of connectivity and dynamical 
elements. This is a strong advantage, since it allows us to study principle and 
well-defi ned behavior, and to reduce the computation to a minimal set of re-
quired properties. At the same time, this reductionism also renders the models 
biologically implausible, since biological systems are subject to noise on pretty 
much any property, such that neuronal networks are mostly random with some 
statistical preferences for certain motifs, and neurons are diverse in type and 
morphology.

Therefore, a strikingly different model for neuronal computation is res-
ervoir computing, originally introduced as  liquid state machines by Maass 
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Figure 11.4 Average cross correlation of noise-induced coherence between two sets 
of neurons marked in blue for two different stimulus conditions: (a) closed line segment 
and (b) open line segment. The noise-induced coherence is stronger for the closed, com-
pared to the open, condition. In the original publication (Korndörfer et al. 2017), it is 
shown that this increased coherence can be decoded as closed contour as early as a few 
spikes after stimulus onset (70 ms).
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et al. (2002) or  echo-state  networks by Jaeger and Haas (2004). In contrast 
to most other computational principles, the  recurrent network of a reservoir 
computer can be unstructured and random. This surprising property results 
from the simple insight that the distance between random mappings of states is 
growing fast, with increasing dimensionality of the mapping. In other words, 
implementing a certain computation does not require a dedicated network with 
specifi c connectivity tailored for the given task but, in principle, only a random 
network that implements a suffi ciently high-dimensional random mapping. In 
the fi eld of  machine  learning, this is known as feature expansion or kernel 
machines (Schölkopf and Smola 2002). Further, reservoir computing makes 
explicit use of the recurrence of neuronal networks to maintain an echo (i.e., 
memory capacity) of past inputs.  This echo is mediated by reverberating activ-
ity, generated by the recurrent connectivity. Together, feature expansion and 
memory of the system can render a reservoir computer a universal computer 
(Buonomano and Maass 2009). The only task-specifi c element in reservoir 
computing is a task-specifi c mapping that can be  learned by  supervised, semi-
supervised (Toutounji and Pipa 2014), or  reinforcement  learning algorithms 
(Aswolinskiy and Pipa 2015).

The remarkable insight of reservoir computing is that random recurrent net-
works can implement, in principle, any kind of computation if the networks are 
suffi ciently complex. From a biological point of view, this implies that initially 
unstructured networks can bootstrap themselves, based on neuronal plasticity, 
to improve performance. Importantly, it can operate initially even without any 
structure.

Computation in Delay-Coupled Systems

When describing computation  in the nervous system from the perspective of 
abstract single neurons or recurrent networks which show emergent behavior 
as a collective, a simplifying assumption is often made: interactions between 
neurons are instantaneous and not delayed. This is simply because delays in 
differential equations complicate the analysis of such systems signifi cantly, 
and deriving theoretical results is a lot harder.

In biophysical reality, however, the brain is a network of nodes and wires 
that must be subject to transmission delays. For instance, conduction delays of 
tens of milliseconds occur in  axonal transmission of spikes (Ringo et al. 1994). 
Interspike intervals, indicative of the timescales on which neurons compute 
outputs, have been found on the same scale in the motor system (Calvin and 
Stevens 1968) or in retinal ganglion cells (Levine and Shefner 1977). It is 
thus clear that delays play a role in the dynamics and computational proper-
ties of neural networks. A long-established example, where this role is well 
understood, is audio processing: transmission delays on delay lines are used to 
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distinguish left ear input from right ear input, and interpolate the location of a 
sound source (London and Häusser 2005).

In cortical structures, network motifs or microcircuits have been found 
that circumvent transmission delays and lead to  zero time lag  synchroniza-
tion (Vicente et al. 2008). On the other hand, in microcircuits where trans-
mission delays are modeled, only very specifi c topologies allow for coherent 
spiking activity, which delays control phase differences between oscillatory 
neurons (Pérez et al. 2011). So, locally, transmission delays control phase 
transitions between in-phase and out-of-phase response, whereas, globally, 
 axonal delays can stabilize coherent response-important phenomena in neu-
ral computation.

Even still, these examples only describe how delays can negatively impact 
behavior of microcircuits or stabilize existing behavior.  Future work should in-
vestigate the degree to which the added complexity of delay-coupled systems 
can be exploited for computation.

A Single Node with Delayed Feedback

Stabilizing emergent phenomena may not be the only mechanism by which 
delays can aid computation in the nervous system. Instead, the benefi t of de-
layed interactions can be illustrated theoretically by examining a single com-
putational node with delayed feedback. This very simple setup is described by 
a delay differential equation:

dx t f x t x t dt. (11.1) 

The equation can be solved by a trick known as the  method of steps (Guo and 
Wu 2013), which is both intuitive and illustrative of the complexity of de-
layed interactions: Assume that the solution to Equation 11.1 on some interval, 
[t0 – τ, t0], is known and denote that solution ϕ0. For the subsequent overlap-
ping interval, [t0, t0 + τ], Equation 11.1 can then be rewritten as

dx t f x t t dt, ,0 (11.2) 

since for all t ∈ [t0, t0 + τ], it holds that t – τ ∈ [t0 – τ, t0], where ϕ0 is the solu-
tion. This is now an ordinary differential equation and can be solved using tra-
ditional methods. However, the starting condition for the new solution is now 
a tuple (ϕ0, ϕ0(t0)) of a function, and the function is evaluated at t0. Further, the 
solution on the interval [t0, t0 + τ] is again a function; let that function be ϕ1. In 
the method of steps, this procedure is iterated with this new starting value for 
the next interval of length τ. In general, if ti = t0 + iτ, then ϕi is the solution on 
the interval [ti–1, ti].

Even though Equation 11.1 is a differential equation of a single, scalar vari-
able, solving it involves mapping functions onto functions for each τ interval 
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or cycle (Figure 11.5a) and is therefore infi nitely dimensional. Delay differ-
ential equations are a subclass of partial differential equations whose state is 
described by functions, instead of fi nite-dimensional state vectors.

By introducing one simple, delayed feedback to a dynamical system, we el-
evate the  complexity from one to infi nitely many dimensions. This complexity 

Time

(a)

(b)

Input

Delay-coupled reservoir

Readout

Cycle length: 
Time

GLM

(c)

Figure 11.5 (a) Schema of solving delay differential equations with the method of 
steps. Functional solutions ϕi are mapped onto solutions ϕi+1 via an integral over the 
original delay differential equations, where the delay dependency is replaced by a de-
pendency on the last solution. (b) A  delay-coupled  reservoir utilizes the complexity 
of delay differential equations for computation by creating an input-driven dynamical 
system and feeding sampled activity during one τ cycle into a GLM readout trained to 
solve a specifi c task. (c) Networks of delay-coupled nodes can be understood as small 
recurrent systems inside a larger recurrent system. This model may be used to model the 
complexity of recurrence and delay coupling at the same time.
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not only makes solving the mathematical problem more diffi cult, it also leads 
to dynamics that can be used for computation and  inference.

The Delay-Coupled Reservoir

Introduced by Appeltant et al. (2011), the delay-coupled reservoir is a system 
described by a delay differential equation, such as Equation 11.1, but driven 
by an input u(t):

dx t ax t x t u t, , (11.3) 

where 𝑔 is a nonlinear function. The key insight from this work is that the ac-
tivity in/of this simple one-node recurrent system can be sampled N-times dur-
ing one delay cycle of length τ, and this sampled activity can be treated as the 
N-dimensional of a reservoir computer with N nodes. The input u(t) is adapted 
to also change on the timescale of one τ-cycle, such that each τ-cycle associ-
ates one N-dimensional vector of activations with one input value. Following 
the reservoir computing procedure, this activation vector can then be used in a 
linear readout to learn a time-invariant,  fading- memory function on the input 
(Figure 11.2).

The on-the-surface simplicity of delay differential equations leads to straight-
forward hardware implementations, where some nonlinear element is driven by 
input and self-coupled via a delay line. These simple building blocks have led 
to implementation based on standard electronic building blocks, but they also 
allow for the exploration of new computing devices, as in using delay-coupled 
lasers and photonics (Larger et al. 2012).

The hidden  complexity of the system, however, allows it to be used in  time-
series forecasting,  speech recognition, and even volatility prediction for fi nan-
cial markets (Appeltant et al. 2011; Grigoryeva et al. 2014).

This complexity, and the process of obtaining a vector of activity, can also 
be looked at theoretically using the method of steps. The iterative solution of 
the ordinary differential equation for subsequent τ-cycles, or intervals of length 
τ, can then be approximated analytically and written as a vector update equa-
tion for the N-relevant sample points directly (Schumacher et al. 2013). Thus, 
for computation within a reservoir computing setup, the infi nite dimensionality 
of space of solutions to the delay differential equation reduces to N dimen-
sions, a free parameter of the model. One can therefore profi t from the poten-
tially infi nite dimensionality of a functional state. In practice, with a chosen 
decay rate α and a specifi c nonlinearity 𝑔, choosing arbitrarily large N does not 
benefi t specifi c  machine  learning tasks above a task-dependent soft threshold. 
Nevertheless, researchers have seen benefi ts in expanding the dynamics of this 
simple, nonlinear, and delayed feedback-coupled node into an N = 50 up to an 
N = 800 dimensional state vector, as input to the linear regressor.
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Instead of sampling the activity of the delay-coupled reservoir at N evenly 
spaced points, one can optimize the placement of these readout points. Here, 
it is useful to treat the N sampling points as a network of virtual nodes with 
a very particular connectivity structure: a lower diagonal exponential decay 
matrix. The distance from one sampling point, or virtual node, to the next can 
then be fi ne-tuned according to a homeostatic plasticity rule. It presupposes 
that good spatiotemporal computational performance is achieved when differ-
ent virtual nodes are both sensitive to their inputs and as diverse as possible 
(Toutounji et al. 2015). The experiments in the study show that this rule does 
indeed lead to increased performance. From the point of view of the readout, 
the result permits a crude biological interpretation: a  linear-nonlinear output 
neuron optimizes the locations along an axon, where it “reads” the activity of 
another neuron with complex time-dependent dynamics. Clearly, this inter-
pretation is somewhat bold, but it highlights the potential of  future research 
that uses delayed feedback models to encode and then decode  information in 
temporal dynamics.

The delay-coupled reservoir  can also serve as a model system to inves-
tigate how two different delays might interact. In a previous study, Nieters 
et al. (2017) highlighted strange dependencies that arise if Equation 11.3 is 
expanded to

dx t ax t x t x t u t1 2, , . (11.4) 

Delays that are close to simple rational, or even integer multiples of each other, 
lead to a poorly performing reservoir computer—how close is too close is con-
trolled by the decay rate α of the exponential decay in the system. A too strong 
dependency of a sampling point onto its own history—the effect of choosing 
the τ2 = 2τ1—is detrimental. This delicate sensitivity to the choice of a second 
delayed feedback is reminiscent of the sensitivity to different delays in micro-
circuits mentioned earlier but is, of course, also an artifact of the discretized 
system used to model the activity at N sampling point with an analytic approxi-
mation and discretization. Future work must focus on a more realistic setting, 
where delays are distributed and continuous to investigate whether sharp tran-
sitions between well- and badly performing models also occur.

The takeaway from previous investigations into delay-coupled computation 
is that the added complexity can induce a complex temporal dynamics readout 
by an appropriate readout mechanism, which can benefi t computation signifi -
cantly. Reservoir computing is a compatible concept that embeds models, such 
as the delay-coupled reservoir, in the context of neural computation. More 
work is needed to connect the observed effects of delay coupling more closely 
with biological reality. Studies also highlight how complex neural networks 
may actually be that are subject to multiple delayed interaction effects. A possi-
ble perspective to study such systems abstractly is to connect single nodes with 
distributed delays recurrently in a reservoir, in the sense of a classical  recurrent 
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 network. In such a network of networks, each node itself can be regarded as a 
simple recurrent system (Figure 11.3).

Discussion

In this chapter, we have discussed several computational principles at the level 
of individual neurons and networks of neurons, and addressed the implications 
of delayed communication. These principles ranged from specifi cally tuning 
single neurons to implement well-defi ned computational tasks (i.e.,  indepen-
dent component analysis) to reservoir computing to implement computing 
based on randomly connected networks and random feature expansion. This 
diversity and wide range of functions can be viewed as either an overwhelm-
ing complexity that might just hide a key underlying unifying principle not yet 
uncovered, or a rich diversity used by the evolution as a large reservoir of tools 
and tricks to implement effi cient computational circuits. If the latter is true, 
then the simple question of which computational principle do we discard is not 
suffi cient. Instead, we need to address effi ciency in terms of performance and 
the use of resources, robustness to noise and structural changes, and generaliz-
ability of the computational principles for different tasks. The ultimate ques-
tion, however, remains essentially open: How does the cortex, or the brain, 
compute information? 
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Abstract— Over the course of the last decade, neural networks 

have finally found their way from mostly academic research into 

commercial applications. So far, this transition has taken place 

primarily behind closed doors at high-performance computing 

centers – but with ever more powerful mobile devices and a 

growing interest in the Internet of Things, a similar revolution is 

ahead of us in the embedded device market. One technology that 

takes center stage in these developments is specialized 

neuromorphic hardware, custom designed for executing neural 

network applications. In this paper, we would like to provide some 

background information on this fascinating branch of hardware 

development for interested readers from other disciplines, 

compare different approaches and provide an overview of the 

current state of the field.  

Keywords—neuromorphic hardware; embedded AI; neural 

networks; deep learning; accelerators 

I.  THE DEEP LEARNING REVOLUTION 

The last decade has brought with it a remarkable 
transformation of the field of artificial intelligence. Starting in 
2012, when a Deep Neural Network now known as AlexNet [1]  
beat all competing approaches in a highly competitive computer 
vision challenge for the first time, Deep Learning has enjoyed a 
stellar rise in popularity - both in academia and industry alike. 
Today, it has become a ubiquitous and indispensable tool for a 
broad range of applications: Unlocking a mobile phone through 
facial recognition [2], controlling it through voice [3, 4], or 
having it translate a website [5] likely relies on a deep neural 
network in the background to bear the brunt of the work. On the 
other end of the spectrum, powerful servers and clusters employ 
deep neural networks for the automated analysis of big medical 
data sets [6], economic forecasts [7] or epidemiological 
predictions [8] etc., and ever-more complex neural networks are 
being developed to tackle increasingly harder problems. 

In the wake of this "Deep Learning revolution" and as we 
mourn the gradual decline of Moore's law [9], there is a growing 
demand for innovative hardware solutions to sustain this 
development – even as we approach the limits of established 
technologies. In particular neuromorphic hardware, which is 
often subsumed with other approaches under the generic 
umbrella terms next generation computing (NGC) or non-von-
Neumann computing, promises to deliver critical performance 
benefits that pave the way for further market adoption of 
machine learning and artificial intelligence. But what exactly is 

neuromorphic hardware, and how does it work? Why is it 
becoming increasingly relevant today, and where might it lead 
us in the future? We'll discuss these questions in the following, 
starting with a little bit of background. 

II. WHAT EXACTLY IS NEUROMORPHIC HARDWARE? 

The term "neuromorphic" is obviously a portmanteau of 
"neuro-" and "-morphic", and it describes hardware that is in 
some way inspired by the morphology of biological neural 
systems. Since biological inspiration can take many forms and 
can be taken to different levels, the label “neuromorphic 
hardware” is applied rather loosely to an entire research field 
that shares the common objective to implement (some) neural 
network models efficiently in hardware. The best way to achieve 
this varies, depending on the type of neural network to 
accelerate, design constraints and the performance criteria that 
have to be optimized, e.g. power, latency, noise robustness etc. 
There are many degrees of freedom in the design process, among 
them: 

 What type of networks should be used, e.g. neurons with 
continuously valued states that change continuously 
with time, or with discrete states that are updated at 
discrete time-steps, or spiking neurons that 
communicate asynchronously?  

 Should these computations be realized by analog or 
digital circuitry? 

 Should the topology of the networks be restricted to 
some specific structure, e.g. to feed-forward, recurrent 
or convolutional networks? 

 Which components of the network should be directly 
implemented by dedicated hardware components, and 
which, if any, should be emulated with a more 
conventional processor design? 

 Can the design be decomposed into functional modules, 
and if so, how should these modules communicate with 
each other? 

Any combination of these (and many more) design choices 
leads to a different species in zoo of neuromorphic hardware 
designs. In practice, this results in a broad continuum from 
specialized multi-processor designs on the one end, all the way 
to full analog instantiations of biological neural network models 

128
T
hi
s
pu

bl
ic
at
io
n
is

in
cl
ud

ed
as

pu
bl
is
he

d.
Fo

r
ar
ch

iv
e
on

ly
.D

o
no

tr
ed

is
tr
ib
ut
e.



 

 

on the other end, where each neuron and synapse of the neural 
network model has a corresponding dedicated electrical 
counterpart. Neuromorphic hardware therefore encompasses 
several diverse technologies, rather than any one in particular, 
so an exact technical definition of the term is difficult. Instead, 
we can identify some characteristic features, or design 
principles, that distinguish (most) neuromorphic hardware 
designs from more conventional approaches: 

 highly parallel computing instead of to the sequential 
operation of a single central processing unit (CPU) 

 the use of distributed and decentralized memory instead 
of a central dedicated storage 

 a system design specifically optimized to implement 
neural networks of some form. 

III. HOW CAN/DOES NEUROMORPHIC HARDWARE WORK? 

Since neuromorphic hardware is designed to accelerate 
neural networks, its merits can only be explained in the context 
of neural networks. Luckily, the mathematical model underlying 
most machine-learning applications of neural networks is 
actually very simple. To get everyone on the same page, what 
follows is a (hopelessly incomplete) high-level glance at the 
theory of neural networks, focusing only on those aspects that 
are relevant for neuromorphic hardware designers. For a more 
complete introduction, we refer to [10] and references therein. 
Everyone who is familiar with the theory already can safely skip 
right ahead to the next section, where we then discuss different 
approaches to implementing such network models in hardware. 

A. Excursion: How do (deep) neural networks work? 

In the machine-learning context1, a neural network is a graph 
structure composed of neurons that are connected by synapses. 
Each synapse can multiplicatively scale its input, which may be 
the output of some neuron or an external source, by some 
number called the synapse’s weight, and transmit the result to 
another neuron. Each neuron linearly combines all of the signals 
from its incoming synaptic connections (scaled by their 
respective weights) into a single signal. This signal is then non-
linearly transformed to produce the neuron’s output. 

Mathematically [10], the neuron 𝑗’s output 𝑦𝑗(𝑡) at time 𝑡 is 

therefore a function of the input signals 𝑥𝑖(𝑡), and has the simple 

form 𝑦𝑗(𝑡) = 𝑓(∑ 𝑤𝑗,𝑖 𝑥𝑖(𝑡) + 𝑏𝑗𝑖 ), where 𝑤𝑗,𝑖 represents the 

scalar weight of a synaptic connection from input 𝑥𝑖 to neuron 𝑗, 
and 𝑏𝑗 is a neuron specific offset or bias term. We can group all 

the weights and bias terms in a single weight matrix 𝑊 and the 

bias vector 𝑏⃗ , which results in the simple matrix equation 𝑦 (𝑡) =

𝑓(𝑊𝑥 (𝑡) + 𝑏⃗ ). From this equation, it should become clear, that 

the multiply-accumulate operations (MACs) required for 
matrix-vector multiplication constitute the main computational 
cost for simulating neural networks. 

One major exception to this story are spiking neural 
networks (SNNs, [11]), which encode a neuron's output instead 

                                                           
1 We only discuss neural network models for machine-

learning, not bio-physically accurate models of nervous 

systems. 

by a sequence of brief, stereotypical pulses (spikes). In these 
networks, much like pulse code modulate (PCM, [12]) in digital 
signal processing, it is the number of spikes per unit time that 
conveys the magnitude of a signal, not the amplitude. The 
corresponding mathematical model requires an explicit 
representation of time and is hence best suited for the processing 
of time-series. 

Despite the simple mathematical formalism, many types of 
neural networks can be realized by different classes of weight 
matrices. To give a few examples, a (block)-triangular weight 
matrix represents a (layered) feed-forward network. Diagonal 
blocks represent recurrently connected layers (i.e. groups of 
mutually connected neurons), and all blocks on the second or 
higher off-diagonal represent so-called skip connections. Off-
diagonal blocks in Toeplitz-form resemble convolutional layers 
– a structure that has proved to be invaluable in image processing 
tasks, and so on. Besides the structure of the weight matrix, we 
can also choose what numeric type of entries it should contain. 
For example, instead of real valued weights, we can use integer 
valued weights, pick from an arbitrary set of discrete weights, 
e.g. binary (𝑤 ∈ {−1,1}) or ternary (𝑤 ∈ {−1,0,1}), or even use 
a compressed encoding of the weights. To summarize, there are 
countless interesting classes of weight matrices, and each of 
them has specific implications for the corresponding class of 
neural networks and offers specific opportunities for hardware 
acceleration.  

In order for a neural network to do anything useful at all, the 
free parameters, i.e. weights and bias terms, must be set to 
specific task-dependent values. Earlier engineering approaches 
like the famous Neocognitron [13] anticipated many of features 
of deep neural networks, but relied heavily on domain-
knowledge and inspiration from the network structures observed 
in nature2. The real breakthrough happened decades later, when 
improvements in computer technology suddenly made it feasible 
to directly optimize (or train) the weight matrices (and bias 
terms) of highly structured networks (e.g. deep convolutional 
feed-forward networks [1]) to minimize errors (or loss) on 
extremely large data-sets.  

Since global optimization of such large non-linear systems is 
near impossible, the work-horse for the optimization of deep 
neural networks are simple, greedy, gradient-based algorithms, 
that differentiate the loss function on a training data-set with 
respect to the network's parameters, and use this information to 
iteratively improve the parameters [10]. While this is 
significantly more difficult for spiking neural networks (the 
discrete-time nature of their event-based communication makes 
the calculation of gradients difficult), some remedies exist [14, 
15] that allow us to use similar tools even for training spiking 
neural networks. As a result, gradient-based methods have de 
facto become such a central part of deep learning, that 
differentiable programming has even been suggested as a more 
accurate label for the entire field [16]. 

2 The study of these biological and artificial connectomes 

under the name connectionism was the intellectual precursor 

of modern deep learning. 
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B. The Neuromorphic Zoo 

As this brief overview/recap of neural networks hopefully 
shows, there are many knobs to turn in the construction of neural 
networks, and the possible hardware implementations are 
similarly plentiful. In the following, let’s have a brief look at 
several different approaches to neuromorphic hardware design. 
We stay on a rather high conceptual level here, and discuss five 
clusters of approaches, grouped by the degree to which the 
network model is directly reflected in the hardware. A more 
complete overview and a more in-depth discussion of the 
various underlying hardware design concepts can be found e.g. 
in [17, 18]. We begin with conventional computing devices, and 
end with truly neuromorphic, fully analog designs that replicate 
each individual synapse in hardware. 

1) Generic co-processors and graphics cards 
Since a major fraction of the simulation and training time for 

neural networks is spent on MAC operations, the key innovation 
in most accelerator designs is an efficient hardware 
implementation of matrix multiplication for some class of 
weight matrices. Arguably the most flexible and generic form of 
hardware accelerators for neural networks are therefore 
conventional many-processor designs like graphics processing 
units (GPUs, [19]) or other “number crunching” co-processors 
like tensor processing/streaming units (TPUs, [20, 21]), which 
have been thoroughly optimized for large and fast matrix-
multiplications. They are generally not considered 
neuromorphic hardware, but the high demand of such devices 
for deep learning applications, among others, has driven the 
development of a new generation of GPUs and TPUs optimized 
entirely for generic parallel compute tasks, and software libraries 
[22, 23] have accordingly begun to delegate more and more 
parallel operations away from the CPU to such co-processors. 
However, their versatility comes at a high price: the ability to 
execute arbitrary programs requires an extensive control-logic, 
powerful arithmetic logic units and a cache-, memory- and bus-
system optimized for arbitrary memory access and fast data 
transfer. This overhead is unnecessary for many neural network 
architectures and can lead to power, performance or latency 
penalties. In addition, since the main speed-up offered by such 
co-processors is through the acceleration of matrix 
multiplication, they yield hardly any benefit at all for certain 
types of networks like SNNs, extremely sparsely connected 
networks or networks with non-linear synaptic effects.  

2) Custom many-processor designs 
Similar in spirit, albeit more closely focused on neural 

network applications, are specialized many-core designs (e.g. 
[24, 25] among many others), that distribute the task of 
simulating or training a large neural network across many 
independent processor cores. They typically support a (reduced) 
instruction set tailored and optimized towards neural network 
applications. Rather than by arbitrary access to shared memory, 
these designs typically implement an efficient routing or 
message passing system for the exchange of information 
between the nodes. Despite the focus on neural network 
applications, the neurons are here emulated algorithmically in 
software, and data flows through a shared bus-system, rather 

                                                           
3 In fact, they are not limited to neural network applications at 

all, and can be used for other tasks with similar demands. 

than dedicated synapses. Since these devices do not directly 
implement any of the components of a neural network in 
hardware, they are not genuine neuromorphic hardware in the 
narrowest sense3, but they are generally discussed alongside 
neuromorphic hardware due to their near-identical application 
areas and user interfaces. 

 

3) Digital deep learning accelerators 
There is another class of digital accelerators (e.g. [26, 27, 

28]), that is designed and optimized on a low level entirely for 
the implementation of (some) deep neural networks. Here, the 
operation of individual neurons is approximated by a dedicated 
digital logic circuit, that realizes the specific MAC operations 
required for the network class of interest (respecting the 
structure as well as the bit-precision the neurons’ input weights 
and activation functions). These devices therefore don’t allow 
arbitrary code execution, but instead require provisioning with 
the precise topology and coefficients of the network. Once 
configured, they act as a black box that efficiently executes the 
provisioned network, mapping digital input signals onto the 
network’s digital outputs.  

 Rather than on their own, such deep learning accelerators 
can be used as small cores embedded within a larger many-core 
system similar to the ones discussed above. Such a modular 
design can be more effective, flexible and easier to scale, in 
particular when a specific network architecture to be accelerated 
allows for specific optimizations. For example, convolutional 
neural networks re-use the same structure of synaptic weights 
repeatedly for different neurons (also called weight-sharing), 
which can be implemented very efficiently by re-using the same 
hardware substrate in a time-multiplexed design that updates the 
network one neuron at a time. Generally in feed-forward 
networks, the neurons within one layer are conditionally 
independent given their input and can thus be processed in 
parallel. Here, an efficient hardware solution could update one 
entire layer at a time. For sparse weight matrices, an optimized 
handling of zeros can further improve performance, while 
networks with low-precision (e.g. ternary) weights can be 
implemented by much more compact circuits. 

4) Analog deep learning accelerators 
As we saw before, the mathematical models of neural 

networks are typically given in terms of real numbers. So rather 
than approximating them via discrete digital circuitry, another 
natural approach is to instead represent the real-valued quantities 
of the model by real-valued physical quantities like analog 
voltages, currents or charges. Such a use of analog circuit design 
goes back to the earliest attempts of neuromorphic hardware 
design in the 1950s [29], but fell out of favor during the digital 
revolution in electronics. While the susceptibility to noise is still 
a major challenge for most applications of analog circuitry, some 
neural networks have, quite surprisingly, proven to be 
remarkably robust to the effects of noise [30] – in fact, some 
forms of noise may even help to improve the robustness of the 
system [31]! Other pit-falls of analog circuit design, e.g. the 
difficulty of precisely controlling (non-)linearities in the system, 
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are much less critical for neural networks than other 
applications, because the networks have sufficient degrees of 
freedom to counteract such defects (provided, of course, that the 
defects are known). Despite these challenges and limitations, 
which ultimately caused the transition to digital circuit design, 
there are of course also major benefits for the implementation of 
neural networks in the analog domain. First, our continuous 
model of a neuron is remarkably similar to that of a logic gate4 
– one might even view it as a continuous, weighted extension of 
logic gates – with one crucial difference: neurons can be 
differentiated with respect to their parameters, which, as we have 
seen above, is critical for deep learning [10]. Deep learning 
therefore provides a framework to optimize analog circuits in a 
way that cannot be directly applied to digital circuits. While it is 
of course possible to approximate the behavior of continuous 
neuron models by digital circuitry (see above), this can result in 
a high component count of transistor and logic gates, each of 
which has itself a complexity rivaling that of an analog 
implementation of the neuron model [17]. In the analog 
approach, multiplication and addition is instead realized by 
direct application of Ohm’s and Kirchhoff’s laws, i.e. by 
choosing appropriate values of resistive elements to represent 
individual synaptic weigths and accumulating the resulting 
currents. This also allows for ultra-low power applications, 
possibly at the expense of an increased noise-floor, and 
alleviates the need to wait for signals to settle, which makes low-
latency asynchronous designs possible.  

Due to strong barriers to entry, e.g. high manufacturing costs 
and long development cycles, only a comparatively small 
number of fully analog deep learning accelerators have actually 
seen the light of day. However, a vast amount of literature has 
been written about this already (see e.g. [17, 18] and references 
therein) and if the number of recent start-ups and research 
projects in that field is any indication, there is a substantial and 
growing commercial and academic interest, as well. 

 

5) Spiking neural network accelerators  
Last but not least, neuromorphic hardware for spiking neural 

networks, currently an outlier in the machine learning world, is 
set to become another major branch of hardware accelerated 
embedded AI. Contrary to conventional neural networks, the 
purely event-driven operation of spiking neural networks defies 
the simple mathematical frameworks of continuous function 
approximation and periodic sampling. An efficient 
implementation of such networks is therefore difficult for both 
clocked digital logic as well as in conventional imperative 
programming paradigms. Combined with the increased 
complexity of training algorithms for SNNs [14, 15, 32], this 
may explain the relative lack of attention these networks have 
received within the machine learning community – despite 
advocacy by some leading theoreticians in the field [11]. 
However, the very same properties of spiking neurons that 
appear as major obstacles for efficient software implementations 
(e.g. integration and low-pass filtering of signals over time and 
rising-edge triggered generation of pulses) are commonplace 
[12] in signal processing and can be implemented by simple 

                                                           
4 The earliest theories of neural networks by McCulloch & 

Pitts [67] already established this connection. 

analog circuits [33]. As a result, there is little overhead in 
complexity when switching from an analog to a spike-based 
network design. To the contrary, since each neuron’s spiking 
output is a binary signal that can be converted into an analog 
signal merely by low-pass filtering (one of the axioms of the 
neural engineering framework [34]), spike-based neuromorphic 
hardware can combine the best of both worlds: the highly 
energy-efficient computation of analog circuitry and the binary 
transmission of signals via spikes, which decreases 
susceptibility to noise and simplifies routing and buffering. 

Just as for digital hardware accelerators, the communication 
between individual neurons of a spiking network can therefore 
be implemented either through dedicated electrical lines or 
through a (digital) package routing system, the most popular of 
which is address event representation [35] encoding, where 
each spike is conveyed as a package containing the “address” of 
the neuron from which it originated. While such a routing system 
greatly improves the scalability of the system by time-
multiplexing the usage of the same communication channels, it 
requires sophisticated scheduling and low latencies that can 
become prohibitive as the number of interconnected neurons 
increases. A hybrid approach that uses many cores with full 
internal connectivity through dedicated lines, connected to each 
other via a common bus system, is therefore a popular 
compromise (e.g. in [36, 37]). 

 

IV. WHY IS NEUROMORPHIC HARDWARE RELEVANT TODAY? 

With this brief overview in mind, one might wonder, why 
neuromorphic hardware has so suddenly become a hot topic 
among AI researchers and ASIC developers. None of these ideas 
seem novel enough to justify this rise in popularity – in fact, 
similar ideas have been continuously suggested since the very 
beginning of artificial intelligence research and computer 
science in the 1950s [29]. Even the term “neuromorphic 
hardware” was popularized already in the 1990s by Carver Mead 
[38], who has been a pioneer in this research area since its early 
days. So why should we invest in neuromorphic hardware today, 
and why didn’t this happen before? 

The most obvious argument is purely opportunistic: never 
before have neural networks had sufficient size to be practically 
useful for complex, data-driven applications. Now, with the  
breakthroughs in image classification competitions during the 
recent years, neural networks have finally proven their worth for 
commercial applications, and have received massive exposure to 
the public and industry ever since. This growing popularity has 
correspondingly lead to an increased demand of efficient 
hardware on which to run neural networks. 

The applications in fields like  image processing [1], gaming 
[39], text analysis [40], audio processing [41, 4] and data-
science, e.g. in medical image analysis [6], have diversified and 
become more complex, with weight coefficients numbering 
anywhere from hundreds of thousands up to a staggering billion 
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for extreme cases [42]5. The range of applications is likely only 
going to increase, as a growing number of mobile devices from 
smartphones [43]  all the way to autonomous vehicles do already 
(or will soon) use neural networks for demanding image 
recognitions tasks, and require the corresponding computing 
power. 

So far, we have been riding the wave of ever-improving 
CPUs and GPUs, and technological progress alone could sustain 
the growing demand, but as we begin to witness the end of 
Moore’s [9] law, we need fundamentally new ideas. Current 
state-of-the-art 7nm CMOS technology approaches physical 
limits and it seems unlikely that we can continue scaling down 
size, power-consumption or latency much further. At the same 
time, the total training time, power-consumption and initial cost 
of systems capable of simulating larger state-of-the-art neural 
networks has sky-rocketed to an unsustainable level [44], while 
the limited power budget of mobile devices has been a limiting 
factor for many potentially interesting applications. 

Of course, neuromorphic hardware, too, has benefitted from 
the technological advances in electronics manufacturing during 
the last few decades. Besides a new market, the availability of 
new technologies is thus another reason for a renewed interest in 
neuromorphic hardware development. For example, new 
transistor design principles like fin field-effect transistors 
(FinFETs, [45]), fully depleted silicon on insulator (FD-SOI, 
[46]) and floating multi-gate MOSFET transistors [47, 48] as 

well as special neuro-transistors (νMOS, [49]) have enabled 
extremely low-power applications and novel neuromorphic 
hardware designs. Since neural networks require a sizeable 
amount of memory for storing the network topology and 
synaptic weights, neuromorphic hardware also stands to gain a 
lot from new trends in memory technology. With small feature 
sizes of 28nm and below and advances in dynamic RAM 
(DRAM) and static RAM (SRAM), it has become possible to 
store reasonably sized networks directly in silico, and process 
data right where it is stored. While this new paradigm of in-
memory computing [50, 51] is by no means limited to 
neuromorphic hardware, the highly distributed structure of 
neural networks can leverage this advantage particularly well, 
and thus overcome the memory-bottleneck that conventional 
von-Neumann architectures suffer from. 

Since the network coefficients (typically) do not change at 
all during inference, emerging non-volatile memory 
technologies (eNVM, [52]) are particularly interesting for 
neuromorphic hardware. One major development is the 
emergence of several forms of memristive devices, which can 
act as the programmable resistive components  required for re-
configurable analog hardware accelerators [53]. Competing 
technologies like charge trap flash memory (CTF) , ferro-
electric field-effect transistors (FeFETs), resistive RAM 
(ReRAM), conductive bridge RAM (CBRAM) and phase 
change memory (PCM) [52, 54] all exploit different physical 
phenomena to allow non-volatile storage on chip, many of them 
supporting the storage of analog values at a multi-bit resolution 

                                                           
5 It should be recognized that despite the general trend of 

increasing network sizes, there are also contrary efforts to 

reduce the number of parameters, e.g. [68]. 

[51], which is critical for analog hardware accelerators and 
reduces the die-space required for memory.  

Lastly, we have learned a lot about neural networks in the 
meantime: we have demonstrated their capability, know now 
that there are indeed use-cases for large networks, and we have 
found better ways and tools [22, 23] to train even large networks. 
As we continue to learn more in-depth about which network 
topologies are effective for which specific tasks, and why, we 
also develop a better understanding of what sort of networks are 
worth accelerating in hardware – and which are not. 

V. WHERE IS THE DEVELOPMENT OF NEUROMORPHIC 

HARDWARE HEADED IN THE NEAR FUTURE? 

Of course, predicting the future is hard, particularly for a 
field that has been through all the season (including the dreaded, 
recurring “AI winter”) several times already. But with new 
exciting technologies on the horizon, such as 3D [55] and wafer-
scale [56] integration, nano-wire transistors [57], carbon nano-
tubes [58] on-chip, silicon photonics [59], spintronics [60], ever-
smaller micro- and nano-electro-mechanical systems (MEMS, 
NEMS [61]), integrated sensor-processor systems and more, it 
is hard to not feel optimistic about the future of neuromorphic 
hardware.  

The technological progress is likely to bring neuromorphic 
hardware into new application areas, where it can reduce energy 
consumption, latency or the cost of existing solutions. For 
example, co-processors for AI are already being included in 
modern smartphones [43] to reduce CPU load during AI 
applications and therefore prolong battery life. On the other end 
of the spectrum, the increasing demand for high-performance 
computing clusters and cloud-services that provide “deep-
learning-as-a-service” [62] shows a market for server-side 
energy efficient, dedicated neuromorphic hardware co-
processors.  

Neuromorphic hardware can also enable applications that are 
in principle possible right now, but not economically viable yet, 
such as natural language [63] or gesture based [64] user-
interfaces for controlling a wide range of electrical devices, e.g. 
in the context of the internet-of-things or home-automation and 
appliances. Industry could use neuromorphic hardware to make 
even low-level processes in manufacturing more adaptive or 
responsive, or improve the interaction between humans and 
machines. 

Finally, the adoption of neuromorphic hardware might even 
enable machine learning solutions that are flat-out impossible 
right now, such as many sophisticated real-time applications like  
the processing and fusion of complex, high-dimensional sensor 
data and the intelligent real-time control of sophisticated robots 
or production plants. Power savings might enable novel mobile 
applications like large-scale distributed sensor networks [65], or 
autonomous systems that are smart enough to act on their own 
and resilient enough to survive in difficult environments. By 
optimizing die-space, neuromorphic hardware could also find its 
way into miniaturized sensors, e.g. ingestible medical sensors 
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[66] and much more. Of course, the most important applications 
might turn out to be entirely different from the ones listed here, 
but we are confident that industry and academia will find 
countless ways to capitalize on neuromorphic hardware in the 
future! 
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• It  can  be  formalized  as  a  system  of  ordinary 

differential  equations  with  discontinuous 

updates at distinct time points.

• Event  signals  are  generated  as  output  akin  to 

spiking  neuron  models,  and  target  signals  are 

similarly provided as a sequence of events. 

• The  learning  rule,  similar  in  spirit  to  the 

Tempotron­rule[1],  in  concert  with  weight 

normalization adjusts  the shape of  the  learned 

filter.

• The  learning  mechanism  can  be  thought  of  as 

enforcing an "energy budget", where parameter 

updates  are  performed  only  at  two  kinds  of 

distinct  events:  the  emission  of  a  detection 

signal  incurrs  a  penalty,  leading  to  a  reduction 

in  the weights of contributing features, whereas 

at  each  target  signal,  the  weights  assigned  to 

those  features  that  recently  contributed  to  high 

membrane potentials are amplified.

• An  adaptive  threshold  paired  with  intrinsic 

plasticity  mechanisms  in­  or  decreased  the 

detector's  sensitivity  in  response  to  target  or 

emitted  signals,  respectively,  thus  adjusting  the 

trade­off  between  false  positives  and  false 

negatives. 

• An individual NAF can be viewed as a variation 

of  a  generalized  functional  linear  model  [6] 

and  thus  represents  a  reasonable  week  learner 

for machine learning applications.

• Performance  and  robustness  can  be  enhanced 

by  routing  the  output  of  multiple  NAFs  with 

diverse  inputs  through  another  NAF  capable  of 

compensating  the  different  incurred  processing 

delays, thus forming an ensemble (ENAF).

• The  training  and  inference  procedure  can  be 

realized  purely  by  instantaneous  local 

computation and exponential memory traces. 

(E)NAFs  are  thus  good  candidate  systems  for 

neuromorphic hardware implementation.

Machine  learning  problems  are  typically  framed  in  a 

regression, classification or prediction setting, where a 

set  of  distinct  data  points  is  to  be  identified  with 

corresponding labels. Artificial neural networks excel at such 

problemse,  because  their  universal  function  approximation 

capability and differentiability can be leveraged for powerful 

gradiente­based  optimization  algorithms.  Neuromorphic 

hardware however,  interacting with  its  environment  in  real 

time,  faces  challenges  that  defy  this  framework.  One  such 

example  is  the  detection  of  specific  events  in  real  time, 

where  the  mapping  from  a  continuous  stream  of  noisy 

input signals onto a discrete set of events is to be learned.

The  temporal  dimension  of  this  task  entails  a  credit 

assignment  problem  for  learning,  since  the  detector  must 

evaluate a history of input signals and needs to be afforded 

some  flexible  processing  delays,  which  makes  defining  a 

differentiable  loss  function  for  the  event  detection  task 

difficult.  This  is  aggravated  in  a  setting  where  the  target 

signals  themselves  are  delayed.  The  constraints  of 

neuromorphic hardware design further restrict the available 

learning  algorithms  to  "any­time"  computations 

implementable  just  by  (traces  of)  locally  available 

information,  which  precludes  many  of  the  established 

gradient­based optimization procedures.

We  propose  a  neuromorphic  event  detector,  the 

Neuromorphic  Adaptive  Filter  (NAF)  and  ensembles 

thereof,  that  utilizes  Gamma  Filter  banks  [4,5]  to  learn  a 

parameterized  multidimensional  signal  filter  through  a 

supervised gradient­free online learning rule. 

Key properties of the model:

State & Weight Traces:

Derived Variables:

Update on signal: Update on target:

Intrinsic Plasticity:

Signal condition:

Speech command detections with ENAF.

A continuous audio stream is represented by  its 

spectral  power  in  10  Mel­adjusted  frequency 

bands. 5 NAFs each receive as  input a subset of 

6 random chosen frequency bands. Their spiking 

outputs  are  used  as  input  signals  for  another 

NAF,  which  then  provides  the  ensemble  output. 

Each occurence of the desired word ("UP") in the 

audio  stream  is  shortly  followed  by  a  spiking 

target signal to each ensemble member.

NAF performance during training.

Detection rates increase while false positive rates 

decrease  during  training  as  the  ensemble 

members  adjust.  Early  on,  the  filter  responses 

within  an  individual  NAF  show  little  specificity 

for the target word ("UP"), but towards the end 

of  training,  the  NAF  has  become  selective  and 

the  threshold  is  set  to  provide  a  reasonable 

trade­off  between  false­positive  and  missed 

detections.
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Neuromorphic computation
in multi-delay coupled
models
Neuromorphic computing provides a promising platform for
processing high-dimensional noisy signals on dedicated hardware.
Using design elements inspired by neurobiological findings and
advances in machine learning methodology, delay-coupled systems
have recently been developed in the field of neuromorphic computing.
Delayed feedback connections enable such systems to generate a
complex representation of injected input in the internal state of single
nodes, which in our context refer to hardware components with
nonlinear behavior and without any memory. In contrast to classical
combinatorial circuits or feed-forward networks, this state is not
distributed in space but in time. Hardware implementations with low
hardware component counts are therefore particularly easy to design
for delay-coupled systems. In this paper, we present an argument for
using delay-coupled reservoirs using multiple feedback terms with
different delays. We present a theoretical analysis of the resulting
system, discuss surprising effects pertaining to the precise choice of
delays, and provide a guideline for the optimal design of such
systems.

P. Nieters
J. Leugering

G. Pipa

Introduction
Driven by recent advances in neuro-inspired machine

learning, the growing field of neuromorphic computing

develops new kinds of hardware dedicated to fast and

energy efficient implementations of artificial neural

networks (ANNs). IBM Research is developing the

neuromorphic TrueNorth chip, simulating more than one

million spiking neurons at just under 70 mW of power [1].

In the context of the Human Brain Project, two

neuromorphic hardware architectures are investigated as

part of its computing platform: an analog implementation

operating in faster than real time [2] and SpiNNaker, a

clocked digital design combining multiple mobile CPU

cores through a fast spike routing system [3, 4].

Much like biological nervous systems [5, 6], which have

inspired neural network and neuromorphic hardware

research, these systems are faced with unique challenges

pertaining to the reliable processing of noisy signals

through complex, delayed interactions of their hardware

components. For systems in discrete time, delays smaller

than one clock period are below the temporal resolution of

the system and do not need to be treated explicitly, greatly

simplifying the design of synchronous clock systems. In

this domain, many ANN architectures have been proposed

and shown to be successful in modern machine learning

applications [7–10]. However, this raises the question of

how very fast systems or clock-free systems such as

biological nervous systems can rely on delayed signal

interactions. For these systems, it is a theoretically

challenging but necessary task to model delays because the

system is sufficiently fast for them to become relevant.

Real-time spiking neural networks have been proposed

as the third generation of neuronal networks [11] and

implicitly include delay effects due to synaptic

interactions. One such network is the Liquid State

Machine (LSM) [12] that, together with Echo State

Networks [13], established reservoir computing (explained

further in the next section) [14, 15] as a field of recurrent

network research. Recent work has explored different

approaches to implement reservoir computers in hardware

including architectures based on memristors [16, 17],Digital Object Identifier: 10.1147/JRD.2017.2664698
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field-programmable gate arrays (FPGAs) [18], and atomic

switch networks (ASNs) [19].

Particularly relevant to the effects of delayed interactions

are recent advances in reservoir computing research that

explore simplistic real-time systems using delayed feedback

instead of recurrent connectivity to generate highly

complex, non-linearly history-dependent system states

[20–22]. Here, we focus on the so-called delay-coupled

reservoir (DCR) [21, 22] and study the advantages of using

multiple delayed feedback signals.

In this paper, we present a theoretical rationale for the

study of DCRs with more than one delay. To this end, we

first introduce the most important concepts of DCRs. Next,

we demonstrate and explain several qualitatively new

effects resulting from a second delayed feedback signal.

The system is evaluated on a non-linear history-dependent

task, and improved task performance is verified with respect

to a DCR with a single delay. We leave the reader with a

critical discussion of the discovered effects, a guideline for

an optimal design of a two-delay DCR, suggestions for

further research, and some concluding remarks.

Delay-coupled reservoir computing
Here, we first introduce the unfamiliar reader to the

main concepts of DCR computing. Reservoir computing,

in general, subsumes approaches where a recurrent

network undergoes little to no adaptation or training

over time

[12, 13]. The activity of the recurrent network, the

reservoir, is used as input to a linear model that learns

to map reservoir activity onto a desired target value. As

the reservoir itself is a purely input-driven dynamic

system that can be viewed as a means for recurrent

feature expansion, multiple different target functions can

be approximated simultaneously by independent linear

models. Although randomly initialized recurrent

connections in the network are not optimized for any

specific task, such systems can already exhibit universal

computational power [23]. Combining the desirable

computing qualities with the simplicity of the underlying

model, the framework has proven itself as a fertile

ground for research into recurrent computation in

dynamic systems. Notable advances include self-

organizing computation in spiking neural networks [24–

26], and transferring learning from the readout layer to

reservoir connectivity [27] as well as the possibility to

control reservoir dynamics with conceptors [28].

An approach different from traditional reservoir

computing replaces the recurrent neural network by the

dynamics of a single node with delayed feedback [20–22].

Instead of the spatially distributed network activity, the

state of the system is then defined by a window over its own

history. This variety of a reservoir computer is referred to as

a DCR [21] and implements non-linear, history-dependent

computation. A schematic of a DCR is given in the upper

part of Figure 1.

We denote the state of node with x, the delay with t,

and the input to the node at time point t with JðtÞ. We

can then describe the single node dynamics with a delay

differential equation (DDE) such as Equation (1):

dx tð Þ
dt

¼ �ax tð Þ þ f x t� tð Þ þ g J tð Þð Þ; (1)

where delayed activity xðt� tÞ mixes with input signal

J(t) and enters the equation via the nonlinear function f. In

accordance with previous work [21, 29], we chose

fðxÞ ¼ h� ½x=ð1þ xrÞ�, resulting in a system akin to the

autonomous Mackey-Glass Oscillator [30]. While a; h;

and r are parameters of the Mackey-Glass equation, g

regulates the degree to which input perturbs the dynamics

in a DCR.

In each disjoint time interval of length t, also referred to

as one cycle of the system, we sample the state of the node

N times. For one cycle ½t0; t0 þ t�, we thus collect the
vector nn of sample states nk ¼ xðtkÞ; tk ¼ t0 þ ku,

k 2 f1 . . .Ng, where u ¼ t=N denotes the temporal

distance between sampled states. We also refer to nn as the

vector of virtual nodes. In analogy with the spatially

distributed nodes of an echo state reservoir [13], the

temporally distributed virtually nodes vk define the state of

the discretized DCR during one cycle. The input signal is

generated from an input function uðtÞ multiplexed with a

random mask: JðtÞ ¼ MðtÞuðtÞ. During each cycle, uðtÞ is
constant, andMðtÞ is a t-periodic, piecewise constant
two-valued function composed of segments of length u.

Modulating the input this way prevents the dynamic

behavior of the single node from converging and thus

increases the variability in the system state during constant

values of uðtÞ.
The linear readout is then trained to map the state nn of the

DCR for each cycle onto a target value. Therefore, the

system as a whole learns a non-linear mapping of the

history of an input sequence uðtÞ onto a target sequence
yðtÞ. In the top of Figure 1, this mapping is illustrated for

both the one delay DCR and the two delay DCR introduced

in the next section.

DCRs lend themselves particularly well to neuromorphic

hardware implementations only requiring one non-linear

node and a tapped delay line. Consequently, DCRs have

recently been studied as a promising alternative to classical

computational paradigms. They have been implemented in

optoelectronic hardware [21, 22, 31] and in fully optical

hardware [32, 33].

Methods
In this section, we extend the DCR described in Equation

(1) with an additional delayed feedback and describe the
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theoretical differences and advantages the second delay

introduces. We formalize the system as follows:

dx tð Þ
dt

¼ �ax tð Þ þ f x t� t1ð Þ þ x t� t2ð Þ þ g J tð Þð Þ: (2)

Here, two delayed terms xðt� t1Þ and xðt� t2Þ are
linearly mixed with the input JðtÞ, while the rest of
Equation (1) remains unchanged. This extension is

illustrated in the top of Figure 1.

Following [29, 34], we derive a discrete time update

equation for the virtual nodes. We omit some of the

mathematical detail for simplicity and refer the interested

reader to [29, 34].

Consider a single cycle of length t1. Let t1 < t2 without

loss of generality, and let fðtÞ denote a solution of DDE
Equation (2) for all t < t0. The continuation of solution f

on the interval ½t0; t0 þ t1� then satisfies
dx tð Þ
dt

¼ �ax tð Þ þ f f t� t1ð Þ þ f t� t2ð Þ þ g J tð Þð Þ: (3)

Given f, this linear non-homogeneous first order initial

value problem can be solved analytically by variation of

constants. The solution is given by

Figure 1

Reservoir computing. Top: a schematic illustration of delay-coupled reservoir computing. Piecewise constant input u is time multiplexed via the t1
periodic random two-valued maskmm to yield the system’s input J . The system’s state x is given by an exponentially smoothed non-linear transforma-

tion of a linear combination of the input J and delayed feedback of previous system states (only t1 in the single delay DCR). On each disjoint time-

interval of constant u, referred to as a cycle, a readout value ŷ is generated by linear transformation of the vector of equidistantly sampled system

states, called virtual nodes. In the two delay DCR, the system state update at a particular virtual node k within a cycle i explicitly depends (“dep.”) on

one or two virtual nodes delayed by t1 and t2. Bottom: The explicit dependencies introduced this way are recursively tracked across cycles in the bot-

tom part of the figure for two different chosen values of t2.
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xðtÞ ¼ fðt0Þeaðt0�tÞ þ eaðt0�tÞZ t

t0
fðfðs� t1Þ

þ fðs� t2Þ þ g JðsÞÞeaðs�t0Þds;
(4)

where s is the integration variable over time. For an

efficient and conceptually simple approximation of

(4), time is discretized with step-size u. In the follow-
ing, we assume that t1 and t2 are divisible by u. As

above, we consider the support point tk ¼ t0 þ ku for

k ¼ f1 . . .Ng. For simplicity, we write

ftk ¼ f f tk � t1ð Þ þ f tk � t2ð Þ þ gJ tkð Þð Þ :

In discrete time, Equation (4) can be approximated using

the trapezoidal rule:

x tkð Þ � f t0ð Þea t0�tkð Þ þ u

2

Xk
j¼1

ea tj�tkð Þðftj þ e�auftj�1
Þ: (5)

Next, the approximate solution Equation (5) can be

extended iteratively in cycles of length t1. To this end, we

introduce the notation: tik :¼ tk þ it1; fi
k :¼ fðtikÞ ¼

fðfðtik � t1Þ þ fðtik � t2Þ þ gJðtikÞÞ 8k 2 f1 . . .Ng
and fi

0 :¼ fðti�1
N Þ; fi

0 ¼ fi�1
N : Now, Equation (5) can be

written as

nik :¼ x tik
� � � fi

0e
�aku þ u

2

Xk
j¼1

ea j�kð Þuðfi
j þ e�auf j�1gif Þ: (6)

We refer to nik as the value of virtual node k during cycle

i. Notice that in Equation (6), nik only depends on f

evaluated at support points of previous cycles because t1
and t2 are integer multiples of u. Equation (6) can thus be

viewed as an update equation that derives the state of the

virtual nodes in cycle i from the state of virtual nodes in

previous cycles. This becomes apparent when written in

matrix form:

nni ¼ b
u

2
fi
0 þ fi

0

� �
þ u

2
Cfi; (7)

where b ¼

e�au

e�a2u

..

.

e�aNu

2
66664

3
77775

and C ¼

1 0 � � � 0

2e�au 1 ..
.

..

. . .
.

0

2e�a N�1ð Þu � � � 2e�au 1

2
666664

3
777775 and fi ¼

fi1
fi2

..

.

fiN

2
66664

3
77775

Here, b captures the influence of the initial value for each

cycle given by the last value of the previous cycle. The

matrix C describes an exponential mixing of non-linearly

transformed, previous virtual node values and input as

given by fi. There are two different ways in which a virtual

node may be dependent on different virtual nodes in

previous cycles. First, when two delays are used, different

virtual nodes vki and n
m
j are linearly combined and then used

as input to the nonlinear function f . We refer to this as

mixing via explicit dependency. Second, the matrix C

describes a linear mixing of these nonlinearly transformed

values. It corresponds to a causal exponential filter

parametrized by the rate of decay au and is referred to as

mixing via exponential smoothing.

To illustrate the effect of the exponential decay, consider

two extreme examples. First, assume a approaches zero,

corresponding to a system without decay term. The vector b

then approaches unity, resulting in a constant offset of the

state within each cycle. The matrix C becomes the

numerical integral operator of the trapezoidal rule. This

leads to nearby virtual nodes (i.e., virtual nodes with indices

close to each other) exhibiting similar states due to

continuity of the integral and thus less variability of the

DCR state within each cycle.

Now, assume a approaches infinity. The vector b

vanishes, and C converges to the identity matrix. The

update equation (7) thus reduces to

nni ¼ u

2
fi: (8)

In this case, the state can be discontinuous allowing for

large variability within each cycle. However, mixing of

virtual nodes can only be achieved if fik explicitly depends

on multiple virtual nodes. Here, this is realized via the

second delay that introduces explicit dependencies on other

nodes. Both types of mixing, exponential smoothing and

explicit dependencies, can contribute to the computational

capabilities of the DCR. As it constitutes the principle and

only means of mixing in the single delay case, the former

effect has previously been described [34]. Here, we present

an investigation into the latter type of mixing with explicit

dependencies.

Node dependency structure in a two delay DCR
In this section, to isolate the effect of mixing via two delay

terms, we assume a ! 1 and analyze Equation (8) in

additional detail. To this end, we describe the set of virtual

nodes vjl in previous cycles j < i on which a given virtual

node vik in cycle i depends. As a consequence of the first

delay t1, v
i
k explicitly depends on v

i�1
k , since t1 equals the

length of the cycle.

In the simplest case, previously studied in [35], t2 is an

integer multiple of t1; here, t2 ¼ 2t1, and v
i
k is additionally

explicitly dependent on vi�2
k . Since virtual node ni�1

k itself

already depends on vi�2
k , this introduces no new
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dependencies on other virtual nodes. In the absence of

mixing via exponential smoothing, the virtual nodes are

decoupled and only depend on their own history. We expect

no qualitative improvement in the performance of the DCR,

since the second delay does not allow for mixing of more

virtual nodes than the one delay case. However, a minor

performance increase attributable to an increased history

dependence of each individual node is possible.

More generally, consider a delay t2 that is not necessarily

an integer multiple of t1. The virtual node v
i
k then explicitly

depends on ni�1
k and n

j
l for some j < i and l 6¼ k, which in

turn depends on vj�1
l and nmp for somem < j and p 6¼ l.

Continuing this scheme iteratively yields a dependency set

Dk ¼ fkþ qd mod N; for q 2 Ng of indices of virtual
nodes, the values of which vik depends on in previous

cycles. Here, the distance d between virtual nodes indexed

inDk is given by the greatest common divisor

d ¼ GCDðt1; t2Þ, andDk thus corresponds to the set of

residuals of k mod d. Consequently, any given virtual node

with index k is affected by the history of jDkj ¼ N/d virtual

nodes. For delays t1 ¼ Nu and t2 ¼ Mu, this implies that

jDkj ¼ N/[GCD(N,M)] is at its minimal value 1 ifM is an

integer multiple ofN and at its maximum valueN ifM and

N are coprime. The number of virtual nodes that are mixed

together within the history of each virtual node can thus be

controlled by the choice of the second delay relative to the

first. Depending on the task, we thus expect the choice of t2
and the resulting size of the dependency set to affect the

performance of the DCR. See the bottom half of Figure 1

for an illustration of how the setDk can be traced back in

time across cycles.

The maskM, defined above as a t1-periodic function, is

evaluated only at the positions of the virtual nodes.

Therefore, it can be identified with the vectorm with

elementsmk :¼ MðtikÞ for arbitrary cycles i, where each
mask value can be associated with the corresponding virtual

node nk. Due tom being two-valued, it separates the virtual

nodes into two classes defined by the mask value associated

with them. When mixing virtual nodes via the second delay

term t2 ¼ t1 þ "u; " 2 N, the autocorrelation ofm at shift

" indicates the degree to which nodes of both classes are

mixed. A low autocorrelation implies an equal mixing of

virtual nodes belonging to both classes within each cycle,

whereas a high autocorrelation implies that virtual nodes

will be predominantly mixed with the same class. The same

methodology can be applied to analyze the interaction of

the mask and mixing via exponential smoothing. In this

case, the autocorrelation at shifts close to zero must be

considered. We propose that a lower autocorrelation of the

mask at relevant shifts increases the complexity of the

mixing and may thus be beneficial for the DCR. When we

use the term “beneficial,” we refer to allowing the DCR

state to realize a more complex encoding of the input,

benefiting the computational power of the DCR, or leading

to systems with particularly interesting properties from a

research perspective. We leave an analysis of other possible

choices of mask values—be it single-valued (corresponding

to no masking at all), or two-valued, multi-valued, or

real-valued—to future work.

Notes on implementation
Here, we use a Mackey-Glass DCR, where the non-linearity

fðfðt� t1Þ þ fðt� t2Þ þ gJðtÞÞ is given by
fðxÞ ¼ h x

1þxr. For all experiments presented here, the

parameters are h ¼ 0:4, g ¼ 0:05 and r ¼ 1. The size of the

DCR used is fixed throughout the experiments with only t2
varying. We choose t1 ¼ 480 and u ¼ 0:6, resulting in

N ¼ 800 virtual nodes. The results presented here are

robust against changes in these parameters that have been

chosen simply to enable a good comparison between

different cases.

In each task, linear least squares regression is used to

train a linear model to estimate the task-dependent target

values from virtual node activity.

Results
The benchmark used in this paper to evaluate memory and

non-linear computing capabilities of the system is to model

a nonlinear autoregressive moving average (NARMA)

time-series in response to a random, uniformly distributed

input uðtÞ � U½0; 0:5�. We use a NARMA-10 variant, where

the target response is given by

y tð Þ ¼ 0:3y t� 1ð Þ þ 0:05y t� 1ð Þ
X10
d¼1

y t� dð Þ

þ 1:5u t� 1ð Þu t� 10ð Þ þ 0:1:

(9)

The DCR must model non-linear dependencies on the

history of y(t) and u(t). In order to increase the requirement

on memory in the system (i.e., the ability of the system to

retain information about previous input), we also evaluate

lagged NARMA-10 variants, where the target output is

shifted in time: yðtÞ ¼ yðt� 1Þ. The input uðtÞ remains not

shifted. We evaluate the performance with the normalized

root-mean-square error (NRMSE):

nrmse y; ŷð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

n y� ŷð Þ2
n var yð Þ

s
: (10)

Effects of the second delay
In a first setup, we systematically vary the second delay

and average the NRMSE of the model predictions on

the NARMA-10 task for each value of the second delay

across 50 trials. We choose the second delay with

t2 ¼ t1 þ "u with " 2 ½0 . . . 2N�. The average NRMSE

evaluated on validation data is shown in Figure 2. We

identify three effects. The most prominent is an average
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increase in performance (i.e., a decrease in the NRMSE)

as t2 increases. This can be attributed to an increase in

the effective memory of the reservoir due to injection of

further delayed activity. Next, we observe a large

increase in prediction error at a narrow peak around

t2 ¼ t1 þNu ¼ 2t1. Third, the lowest error is

consistently achieved at t2 ¼ t1 þ ðN � 3Þu. To a

lesser degree, the last two effects systematically appear

also for some rational quotients t2/t1 and become more

pronounced with increasing rate of decay. These results

are in accordance with the predictions derived above, in

particular since the optimal delay t2 ¼ 1597 is the

largest prime below 2t1 ¼ 1600 and thus coprime to t1.

In Figure 2 at bottom, we also provide a plot of the

greatest common divisor (GCD) for the tested delays to

allow for a visual comparison of the qualitative

(location of peaks) and quantitative (relative height of

peaks) relationship between the GCD curve and the

error curve.

This qualitative structure of the error curve continues for

2 ½N . . . 2N . . .�. For the NARMA-10 task presented here,

the first effect of an increase in effective memory vanishes

during the interval " 2 ½N; 2N � and minimal values of the

error curve never achieve error rates as low as t2 ¼ 1597.

As explained in further analysis of our results, we expect

this specific optimal choice of t2 to be attributable to a

specific memory increase fitting the particular task.

Analysis at critical choices of second delay
As described above, two of the three effects that the choice

of the second delay can have are most prominent around

values of t2 where the GCD of t1 and t2 is large. To

examine these critical choices of the second delay, we

present three control experiments and illustrate

performance around " 2 ½N � 20 . . .N þ 20� in the right
inset of Figure 2.

First, the shape of the error peak is explained by the

causal exponential smoothing in the update equation. It

Figure 2

Dependency of the two-delay DCR performance on the choice of the second delay. Depicted in blue is the NRMSE between a target NARMA-10

time-series and the correspondingly trained linear readout of the DCR when varying the second delay t2 with a slow decay rate a ¼ 1. In purple, we

repeat the experiment with a very fast decay rate a ¼ 1000 to isolate mixing due to explicit dependencies. On a separate scale below, we plot the

GCD between the two delays. Notice that, especially for the very fast decay rate, the GCD is large exactly where performance on the prediction task

is poor. The inset around t2 ¼ 2t1 shows two additional control experiments, where the masking procedure has been altered. In green, we show the

NRMSE achieved with two sequential random masks that do not correlate. A mask with a particularly wide autocorrelation profile is used to compute

the green error curve. Here, the influence of autocorrelation on the shape of the error peak is demonstrated, as well as the lack of asymmetry for a sys-

tem with very fast decay.
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leads to non-linear mixing of virtual nodes with a delay

slightly larger than t1. As described earlier, choosing a

second delay slightly larger than 2t1 has the same effect,

and we do not introduce new mixing into the system.

Choosing a second delay t2 slightly smaller than t1,

however, introduces additional mixing of later nodes in

previous cycles. It complements the exponential filter and

results in an effect akin to non-causal filtering around each

node. Notice how in Figure 2 the asymmetry vanishes when

a fast decay rate is chosen.

A mask with a wide autocorrelation profile leads to a wide

error peak around " ¼ N whereas a low autocorrelation

profile achieved by alternating between two different masks

for even and odd cycles leads to a shallower peak.

Comparing a DCRwith very fast exponential decay and slow

exponential decay, we observe the predicted sharp peak in

the error for t2 ¼ 2t1 (see Figure 2, inset). This supports the

hypothesis that the interplay between the mask’s

autocorrelation and exponential smoothing influences the

complexity of mixing in the system, and thus performance.

Second, we discuss the valley in the error curve occurring

to the left of the error peak for a system with slow

exponential decay (see blue line in the inset of Figure 2).

From our discussion of the GCD, the position of this valley

is intuitive. The GCD of t1 ¼ Nu and t2 ¼ t1 þ ðN � bÞu
must be smaller than b, resulting in consistently small

GCDs for small b. The interaction with the exponential

filter then leads to mixing of neighboring nodes for which

the GCD is small. This mixing of small neighborhoods

leads to neighboring nodes exhibiting similar states.

Additionally, due to the large dependency set resulting from

this mixing, changes in one node propagate through all

other nodes over long periods of time. The fact that the two

delay periods are almost but not quite integer multiples of

each other therefore leads to an effect analogous to beat

phenomena, where slower oscillations emerge from

superposition of two similar oscillations. In preliminary

experiments, we find stronger, slower components in the

Fourier power spectrum of virtual node states

corresponding to smoother transitions between values of

virtual nodes. The performance benefit of this effect is task

dependent, as it trades a longer history dependence for the

volatility of the system state. For example, there is no

benefit in choosing " ¼ N � 3 for different n-bit parity

tasks (results not shown here). The intuition here is that

information about the history beyond the window, which

the recurrent Equation (9) depends on, can make

prediction of the NARMA-10 time-series easier. The n-bit

parity task however is only dependent on the exact

window where the parity is computed and thus stands to

benefit more from complex transformations of the recent

input history rather than on longer memory. Further

analysis of how different tasks can benefit from the

described effect is left to future work.

Increase in performance for memory dependent
non-linear tasks
In Figure 3, we show the increased performance of two

different two-delay DCRs compared to a single-delay DCR

compatible with earlier work [20] on lagged NARMA-10

prediction tasks. We choose the second delay as

t2 ¼ t1 þ ðN � 3Þu and t2 ¼ t1 þNu corresponding to

what we predict to be an optimal and worst-case choice

respectively. In the optimal case, the second delay leads to a

large and consistent performance increase over both a

single-delay DCR and a worst case two-delay DCR. The

reported average NRMSE for the optimal choice is 0:065
with a variance of 0:0015 on the no lag prediction task,
increasing performance by 63:5% over the single-delay

DCR. The poor performance of the worst-case two-delay

DCR, despite the second delay being very close to the

optimal case, highlights the importance of choosing

additional delays correctly.

Introducing lag in the prediction task raises the task

difficulty, as the increase in average NRMSE for the

single-delay DCR illustrates. Comparatively, the optimal

two-delay DCR shows very slow deterioration for

increasing lag, revealing the significant memory increase

achieved.

Discussion
We have presented a mathematical analysis of discretized

DCRs and dependency structures introduced by adding a

second delayed feedback signal. We have demonstrated how

this analysis presents a tool to choose a second delay,

effectively resulting in greatly improved performance on

standard benchmarks. One limitation of the analysis based

on greatest common dividers between two delays is its

restriction to time-discrete systems. An additional side effect

of the discrete nature of the current work is the extreme

sensitivity of the GCD to small changes in the delays.

Consider for example a systemwhere t1 ¼ pu and p is
prime. The GCD is now insensitive to the choice of the

second delay, as all natural numbers except multiples are

coprime to p. Simply changing the systems to t1 ¼ ðpþ 1Þu
will dramatically change the sensitivity towards the second

delay. This holds particularly true for systemwith very fast

exponential decay. In future work, we aim to extend the

understanding developed here to the realm of time

continuous systems to help guide the development of a larger

variety of delay-coupled computing systems.

We also developed a better understanding of the effect

masks have on DCRs. We show how the autocorrelation

structure of the mask determines whether nodes of the same

or different classes are mixed and demonstrate that this can

have a large influence on performance (effect on NRMSE)

in various control tasks. Further research is needed to fully

understand the interaction of masking and mixing.

While we have presented large performance increases

on NARMA prediction tasks, systematic study of a
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task-dependent trade-off between history and non-linear

computation is needed. In this context, remaining model

parameters, such as the decay rate in combination with

multiple delays, should also be investigated more closely.

This will further the understanding of the computational

power of complex delay-coupled systems and allow for

easier use on real-world tasks.

In hardware implementations, physical properties of the

system constrain the rate of decay and in turn the mixing via

exponential smoothing. Here, introducing additional

feedback connections offers the opportunity to influence the

degree of mixing via explicit dependencies. In turn, this

methodology allows control of the inertia vs. the volatility

of the system. Thus, the effects presented here can help

guide the design of DCRs realized in dedicated hardware.

Conclusion
DCR computing represents a computational paradigm that

lends itself particularly well to implementation in hardware

and can offer a different perspective on delays in physical

and biological computing systems. For example, it

demonstrates that in neuromorphic hardware, and

potentially the brain, delayed feedback signals can

allow simple non-linear elements to exhibit complex

history-dependent behavior. Here, we have explained how

different effects due to the inertia of the system, input

masking, and the precise choice of a second delay can be

isolated and explained separately. In particular, the choice

of the second delay has tremendous consequences on the

computational capabilities of the DCR. We have developed

a mathematical framework within which an informed

choice of the second delay is possible, allowing the single

node system to perform on par with large spatially

distributed reservoir computers in complex time-series

prediction tasks. We conclude that multi-delay-coupled

systems present an attractive paradigm for the development

of new neuromorphic hardware for computation in

non-von-Neumann architectures.
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A neuronal population is a computational unit that receives a multivari-
ate, time-varying input signal and creates a related multivariate output.
These neural signals are modeled as stochastic processes that trans-
mit information in real time, subject to stochastic noise. In a stationary
environment, where the input signals can be characterized by constant
statistical properties, the systematic relationship between its input and
output processes determines the computation carried out by a popula-
tion. When these statistical characteristics unexpectedly change, the pop-
ulation needs to adapt to its new environment if it is to maintain stable
operation. Based on the general concept of homeostatic plasticity, we pro-
pose a simple compositional model of adaptive networks that achieve in-
variance with regard to undesired changes in the statistical properties of
their input signals and maintain outputs with well-defined joint statis-
tics. To achieve such invariance, the network model combines two func-
tionally distinct types of plasticity. An abstract stochastic process neuron
model implements a generalized form of intrinsic plasticity that adapts
marginal statistics, relying only on mechanisms locally confined within
each neuron and operating continuously in time, while a simple form of
Hebbian synaptic plasticity operates on synaptic connections, thus shap-
ing the interrelation between neurons as captured by a copula function.
The combined effect of both mechanisms allows a neuron population to
discover invariant representations of its inputs that remain stable under
a wide range of transformations (e.g., shifting, scaling and (affine linear)
mixing). The probabilistic model of homeostatic adaptation on a popu-
lation level as presented here allows us to isolate and study the indi-
vidual and the interaction dynamics of both mechanisms of plasticity
and could guide the future search for computationally beneficial types of
adaptation.

Neural Computation 30, 945–986 (2018) © 2018 Massachusetts Institute of Technology
doi:10.1162/NECO_a_01057
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946 J. Leugering and G. Pipa

1 Introduction

When we talk about adaptation, we take it to mean what W. Ross Ashby
had in mind when writing his seminal book Design for a Brain, where he
argued that in a volatile environment, “‘adaptive’ behavior is equivalent
to the behavior of a stable system” (Ashby, 1954, p. 64). Active dynamical
mechanisms that stabilize the activity of neural populations in spite of sud-
den changes in sensory inputs, lesions, or rewiring of synaptic connections
have been studied extensively under the general term homeostatic plasticity.
Some of them are confined within individual neurons, generally referred to
as intrinsic plasticity; others operate within synapses and are thus grouped
under the umbrella term of synaptic plasticity.

Here we aim to unify such forms of plasticity in a single mathematically
simple framework of continuous-time stochastic processes that enables us
to analyze their distinct functional roles and interactions and allows us to
extend the notion of homeostatic plasticity from the level of individual neu-
rons to that of populations.

A wide variety of specific candidate mechanisms of synaptic and in-
trinsic plasticity has been studied extensively, from both biological as well
as information theoretical perspectives: Bienenstock, Cooper, and Munro
(1982) proposed a form of synaptic plasticity that determines the growth
or decay of synaptic connections under the constraint of maintaining a
fixed mean firing rate. Turrigiano and Nelson (2004) conjectured a role
of homeostatic plasticity in stabilizing the transmission of information in
feedforward networks by fine-tuning the balance between excitatory and
inhibitory connections. Both approaches assume a self-regulating form of
synaptic adaptation that renders a neuron population invariant to addi-
tive shifts in its inputs, ensuring that resulting mean firing rates remain
well within physiological bounds. In the abstract, dynamical systems mod-
els of biological spiking neurons, spike rate adaptation effects were incor-
porated by slowly changing adaptation variables (Izhikevich, 2003) and
spike-induced responses (Jolivet, Lewis, & Gerstner, 2004) to closely match
experimental measurements. In these models, a neuron’s adaptation to its
spiking output, rather than its input, is the driving force of homeostatic
plasticity.

Scale invariance was proposed via a form of plasticity referred to as
synaptic scaling (Turrigiano, 2008) or gain control (Burrone & Murthy,
2003), where synaptic connection strength or neural excitability is regu-
lated, such that the variance of membrane potentials remains fixed. Mul-
tiple timescales of such adaptation were observed, potentially serving
different purposes, that jointly improve information transmission (Fairhall,
Lewen, Bialek, & de Ruyter Van Steveninck, 2000). Synaptic depression
(Abbott, Varela, Sen, & Nelson, 1997) and diffusion of neurotransmitters
(Sweeney, Kotaleski, & Hennig, 2015) were suggested as two fast-acting
candidate mechanisms that could achieve scale invariance in order to
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A Unifying Framework of Synaptic and Intrinsic Plasticity 947

increase the dynamic range of a neuron’s output and thus improve its abil-
ity to transmit information.

The concept of a neuron as a bottleneck of information transmission (Bell
& Sejnowski, 1995; Stemmler & Koch, 1999) expanded this notion and of-
fered an information-theoretical explanation for the utility of homeostatic
adaptation. In this framework, the maintainance of stable characteristics of
a neuron’s output, in spite of changes in the characteristics of its input, al-
lows a neuron to discover and encode information about its inputs in a
stable representation, thus making a population more robust to environ-
mental changes, noise, or spike timing variability (Buesing & Maass, 2010).
Intrinsic plasticity mechanisms were proposed to tune the nonlinear re-
sponse function of neurons to optimize properties of their outputs, such as
the maximization of information transmission (Toyoizumi, Pfister, Aihara,
& Gerstner, 2005) or the minimization of divergence from a desired station-
ary distribution (Savin, Joshi, & Triesch, 2010; Triesch, 2007). Their interac-
tion with synaptic plasticity and synaptic scaling was analyzed (Toyoizumi,
Kaneko, Stryker, & Miller, 2014) and shown to yield emerging properties,
such as the ability to implement blind source separation on prewhitened
inputs in simple model neurons (Buesing & Maass, 2010; Savin et al., 2010;
Triesch, 2007), a feat observable in vitro as well (Isomura, Kotani, & Jimbo,
2015). Similar results were obtained by Hyvärinen and Oja (1998), who used
synaptic scaling in combination with simple nonlinear Hebbian learning
rules to discover independent components.

These results provide crucial insight into the capabilities and limitations
of neural plasticity and serve as the basis of this article. We contribute to this
field of theoretical research by unifying the information-theoretical concept
of intrinsic plasticity, enforcing a stable, fixed distribution of activations in
the face of changing input statistics and Hebbian synaptic plasticity within
an abstract but simple, probabilistic, and compositional model of adaptive
neuron populations that avoids several limitations of the approaches dis-
cussed above. The model’s activation function is directly parameterized by
the membrane potential statistics that neurons should adapt to. Thus, the
often complex update rules proposed in models of intrinsic plasticity are
replaced by causal (nonlinear) filters of the membrane potential, such that
adaptation dynamics can be analyzed and convergence ensured. Since our
neuron model is fully determined by the stochastic properties of the neu-
ron’s membrane potential and activation processes, it could be easily ad-
justed to experimental data observed in vivo.

The continuous-time nature of our model facilitates studying the inter-
action between neural dynamics, synaptic dynamics, and plasticity and
makes it easier to reconcile with its biological counterpart. By restrict-
ing plasticity to intrinsic and Hebbian synaptic plasticity while excluding
global mechanisms such as a detailed balancing of excitation and inhibi-
tion or synaptic scaling, our model makes use only of information locally
available to neurons and synapses, respectively. In light of Ashby (1954), we
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948 J. Leugering and G. Pipa

view many of the suggested benefits of plasticity as instances of the more
general principle of homeostatic self-regulation, such that, for example, the
purpose of blind source separation becomes, first and foremost, to find an
informative, transformation-invariant representation of a population’s in-
put. We thus aim to elevate the notion of homeostatic adaptation from the
level of individual neurons to the level of populations through the interplay
of intrinsic and synaptic plasticity.

To illustrate the capabilities of the model, we reproduce results by Savin
et al. (2010) and theoretically analyze the complementary role that intrin-
sic plasticity plays in stabilizing Hebbian learning, thus allowing individ-
ual neurons to discover informative components of their input signals.
We demonstrate the generality of these results in a network trained
on image patches, where lateral decorrelation drives neurons to learn a
transformation-invariant representation of their multivariate inputs by im-
plementing a form of principal or independent component analysis.

2 An Adaptative Network Model

The adaptive network model comprises adaptive neurons and adaptive
synapses. The intrinsic plasticity mechanism implemented within each neu-
ron uses locally available information about statistical properties of the neu-
ron’s membrane potential to adapt its behavior, such that its output remains
stationary with predetermined statistics. Hebbian synaptic plasticity uses
the product of (a function of) activations of a synapse’s presynaptic source
and postsynaptic target to update its connection strength. Correlated ac-
tivity between source and target thus drives synaptic growth. By combin-
ing the adaptation of the marginal statistics via intrinsic plasticity with the
adaptation of the copula via synaptic plasticity, the adaptive network real-
izes plasticity of its multivariate joint outputs and can become invariant to
a large range of changes in its input statistics.

A population of neurons can thus be seen as a computational unit that re-
ceives a multivariate stochastic process as its input and linearly transforms
and projects it on a set of adaptive neurons via adaptive synaptic connec-
tions. Each neuron then nonlinearly transforms its marginal input, and the
joint activations of these neurons are taken to be the multivariate output of
the population that subsequently becomes the input to the same or another
population. (See Figure 1 for an illustration of the adaptive network model.)

We adhere to a simplistic yet powerful class of linear-nonlinear mod-
els (Ostojic & Brunel, 2011) that separates the dynamics of a neuron into
two components: a linear, spatiotemporal filtering of inputs and a nonlin-
ear transformation thereof, which yields the instantaneous firing intensity
of the neuron. Although beyond the scope of this work, the model can be
further extended using a spike train point process that samples spikes ac-
cording to the neuron’s time-varying firing intensity. Multiple input signals
are linearly combined within the neuron’s dendritic tree through weighted
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A Unifying Framework of Synaptic and Intrinsic Plasticity 949

Figure 1: Schematic overview of the adaptive network model. Stochastic pro-
cesses representing inputs into the population are combined via weighted,
adaptive synaptic connections and integrated into membrane potential pro-
cesses. Sufficient statistics of these processes are estimated in real time and used
to adapt the neurons’ nonlinear activation functions such that they result in sta-
tionary activation processes with predefined distributions. These activations,
or sampled spike trains with accordingly time-varying intensity (not discussed
here), are in turn used as inputs for other neurons.

adaptive synaptic connections and integrated into a neuron’s time-varying
membrane potential Xt , a real-valued stochastic process. The statistical
properties of this membrane potential process are assumed to change rarely
or slowly, such that the process can be locally well approximated by a
(piece-wise) stationary process. The neuron’s nonlinear activation function
νφ (x) ∈ C2(R,R+) is parameterized by the vector φ and maps its membrane
potential Xt to an intensity or instantaneous firing rate Yt = νφ (Xt ), also
referred to as the neuron’s activation or output. It follows that the activa-
tion is a stationary stochastic process as well, and for both the membrane
potential and the activation, stationary distributions PX and PY can be de-
rived such that Xt ∼ PX and Yt ∼ PY (see lemma 5 in the supplementary text
A.1). For the special case of an exponential function ν, this corresponds to a
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950 J. Leugering and G. Pipa

continuous-time generalized linear model as proposed by Truccolo, Eden,
Fellows, Donoghue, and Brown (2005).

Conversely, given both a stationary distribution of membrane potentials
PX and a desired distribution of firing rates PY , a nonlinearity ν can be de-
rived that satisfies Yt = ν(Xt ) ∼ PY for Xt ∼ PX (see lemma 6). This nonlin-
ear activation function can be parameterized by some sufficient statistics η̄

of the membrane potential distribution PX , the estimation of which is the
principal task of intrinsic plasticity. By continuously estimating η̄, such an
adaptation mechanism can maintain the desired output distribution PY in
spite of gradual changes in the statistics η̄ of its membrane potential and
thus generates a (nearly) stationary output process Yt . In this work, spike
generation is not modeled; instead, the continuous activations are used di-
rectly in a rate-coding paradigm to derive theoretical results.

2.1 Model Components. The network model described is composed
of four components to be chosen independently. First, a class of stochas-
tic processes can be chosen to model the dynamics of individual mem-
brane potentials and thus determine their marginal membrane potential
distributions. Second, the desired marginal distribution of the neurons’ ac-
tivation can be defined to match theoretical considerations (e.g., the expo-
nential distribution—Triesch, 2007) or biological data (e.g., the log-normal
distribution—Hromádka, DeWeese, & Zador, 2008). Third, codependency
between the signals projected onto the neurons can be introduced or mod-
ified by an appropriate connectivity structure of synaptic connections.
Finally, the precise mechanisms of intrinsic and synaptic plasticity can be
chosen to implement invariance with respect to certain changes in the pop-
ulation’s input statistics. Each of these modeling choices is briefly discussed
next.

2.1.1 Membrane Potential Processes. With little loss of generality, we as-
sume that the membrane potential of an idividual neuron can be modeled
as a process operating on two timescales. The time-varying potential Xt is
described by a stationary stochastic diffusion process of the general form

dXt = a(Xt )dt + b(Xt )Itdt, (2.1)

where a models the autonomous deterministic behavior of the membrane
potential and b modulates the impact of the time-varying input It . We as-
sume for convenience that the stationary distribution PX of Xt is a mem-
ber of an exponential family of distributions, parameterized by a vector
of (minimally) sufficient statistics η̄. This constraint is not particularly re-
strictive, since a large variety of probability distributions belong to an ex-
ponential family, for which a diffusion process with according stationary
distribution can be constructed (Bibby, Skovgaard, & Sørensen, 2005). On
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A Unifying Framework of Synaptic and Intrinsic Plasticity 951

an orders-of-magnitude slower timescale, the statistics η̄ of the membrane
potential are themselves subject to changes that are not part of the model.
The chosen diffusion process can be adjusted to match dynamic properties
such as the membrane potential’s impulse response, thus giving the mod-
eler flexibility to choose in accordance with biological observations. For il-
lustration purposes, we model the membrane potential as a simple leaky
integrator of the form

dXt = θ (μ − Xt )dt + σ
√

2θ Itdt, (2.2)

where θ is the leak rate time constant of the membrane potential, μ is the
resting potential, and σ controls the sensitivity of the membrane potential
to external input. When the neuron is driven by white noise (modeled as
a derivative of Brownian motion) Itdt = dBt , the resulting membrane po-
tential resembles an Ornstein-Uhlenbeck process with gaussian stationary
distribution PX = N (μ, σ 2) (see lemma 4). This choice of stochastic process
is commonly used as a candidate model of membrane potentials (Ricciardi
& Lánský, 2006). While this choice of membrane potential process is mathe-
matically convenient, questions have been raised about the applicability of
such a model to biological data (Shinomoto, Sakai, & Funahashi, 1999), and
a more sophisticated choice could be made here if required. The stationary
membrane potential distribution family of choice should be general enough
that any relevant changes in the distribution (e.g., due to effects of learning)
are captured in its parameters. In the examples presented here, input pro-
cesses exhibit either stationary gaussian, Laplacian, or beta distributions.

Note that the stochastic input term It in the process makes no distinction
between an unknown “signal” and “noise” present in the input—just the
combination of both is modeled. This makes it possible to match the sta-
tistical properties to biological observations without knowledge of what is
signal and what is noise in light of the neuron’s computational role.

2.1.2 Activation Distributions. The stationary distribution PY of firing
rates affects the neuron’s capacity to transmit information about its
membrane potential Xt and has a considerable impact on the neuron’s com-
putational role. For a fixed mean firing rate, for example, the exponen-
tial distribution maximizes the entropy of the neuron’s intensity (Triesch,
2007), whereas a narrowly peaked bimodal distribution could alternate be-
tween periods of high and low firing rates, leading to more precisely timed
bursts of spikes. Distributions with heavier tail probabilities turn the neu-
ron into a coincidence detector, while others may match biological observa-
tions for certain neuron types best. When linearly decorrelated, marginally
uniform activations become maximally informative (see also section 2.1.4).
For a more detailed discussion of the effects, that the choice of an activa-
tion distribution can have on the neuron model, we refer readers to the
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952 J. Leugering and G. Pipa

supplementary text A.6. In the following, a continuous distribution PY is
assumed for mathematical convenience, but this is not strictly necessary.

When modeling connected neural populations, the distribution PY

should be chosen in accordance with the stationary distribution PX of the
membrane potential process, such that a linear combination of multiple
neurons’ outputs, filtered by synaptic responses and integrated, results in
the assumed stationary distribution of the membrane potential. However,
when a gaussian process is chosen for the membrane potential, this may be
neglected for a large number of synaptic inputs due to the central limit the-
orem and the combined smoothing effect of the synaptic and membrane po-
tential spike response. For the examples presented here, either log-gaussian
or log-Laplacian stationary activation distributions are used.

2.1.3 Intrinsic Plasticity. Consider a model neuron as described above
with a known membrane potential process Xt that has the stationary ex-
ponential family distribution PX parameterized by sufficient statistics η̄ =
E[η(Xt )], where η is some continuous function of the random variable Xt .
By filtering the process φt = η(Xt ) with a causal exponential filter, we con-
struct an exponentially weighted running estimate φ̄t ≈ η̄ of the membrane
potential’s sufficient statistics. The dynamic properties of this process φ̄t are
derived in the supplementary text A.4. As outlined in section 2, the neu-
ron’s activation function νη̄

def= F−1
Y ◦ FX is chosen to map the membrane po-

tential distribution PX with cumulative distribution function FX onto the
desired output distribution PY with cumulative distribution function FY . By
using φ̄t as an empirical estimate of the expected value E[φt] = E[η(X )] = η̄,
the activation function νφ̄t

thus always approximates the mapping νη̄ from
the current membrane potential distribution parameterized by η̄ to the
desired firing intensity distribution, making the neuron invariant to any
(slow) changes in the parameters η̄ of the membrane potential distribution.
It should be stressed that this functional notion of intrinsic plasticity models
the combined effect of all forms of homeostatic mechanisms within the neu-
ron, such as spike-rate adaptation, effects due to depletion, diffusion, and
aggregation of neurotransmitters, gene expression, and more. If desired,
multiple adaptation variables, changing with different timescales, can be
included as long as they serve as sufficient statistics of the membrane po-
tential distribution.

2.1.4 Connectivity and Copulas. Neurons within a population may be
related through shared inputs or lateral connections. To model the rela-
tionship between the signals processed by each neuron, we assume that a
population of neurons receives inputs from a multivariate stochastic pro-
cess, which is subsequently linearly transformed by synaptic connections,
projected onto the neurons, and integrated into their membrane poten-
tials. With an appropriate choice of weights, a sufficiently large number of
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A Unifying Framework of Synaptic and Intrinsic Plasticity 953

synaptic connections can induce an arbitrary covariance structure. Conse-
quently, any change in the covariance structure of the input process could
be reversed by an appropriate choice of synaptic connections (see the sup-
plementary text B.3 for more information).

Since each neuron only (invertibly) transforms its marginal membrane
potential distribution to its marginal output distribution, only neurons
driven by (in)dependent inputs exhibit (in)dependent outputs. To be able to
define the dependency structure independent of the chosen marginal mem-
brane potential and output distributions, we factorize the stationary joint
membrane potential distribution PX into the marginal distributions PXi and
a so-called copula C with density c (Embrechts, Lindskog, & McNeil, 2001).
For n neurons, this allows us to express the joint distributions of a popula-
tion’s membrane potentials X and activations Y as follows, where f denotes
a density and F a cumulative distribution function of the corresponding
random variable in the subscript (see lemma 8 in the supplementary text
B.1):

FX (x) = FX (x1, . . . , xn) = C(FX1 (x1), . . . , FXn (xn)), (2.3)

FY (x) = FY (x1, . . . , xn) = C(FY1 (y1), . . . , FYn (yn)), (2.4)

fX (x) = c(FX1 (x1), . . . , FXn (xn))
n∏

i=1

fXi (xi), (2.5)

fY (y) = c(FY1 (y1), . . . , FYn (yn))
n∏

i=1

fYi (yi). (2.6)

Under the effect of intrinsic plasticity, all activations Yi are identically
distributed, and the joint distribution of activations is fully determined by
the desired marginal stationary activation distribution FYi and the copula C.
Note that C, which captures the relation between the neurons’ joint outputs,
also reflects the structure already found between their membrane poten-
tials, which is in turn determined by the structure between the input signals
driving the neurons. The copula thus captures the interrelation between the
neurons independent of their activation functions or any invertible trans-
formation thereof (see the supplementary text B.1). The copula itself is a
probability distribution, the entropy of which measures the mutual infor-
mation between the random variables modeled by it (Ma and Sun, 2011).
Mutual independence is thus achieved when the entropy of their copula is
maximized, resulting in a jointly uniform distribution, also referred to as
the independence copula.

Specifically for stationary membrane potential processes with gaussian
or Laplacian distributions, as used in the following, the copula is fully
determined by the covariance structure of the inputs and the synaptic
connection weights. A direct consequence of this is that an appropriate
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954 J. Leugering and G. Pipa

choice of synaptic connection weight can be used to render the neurons
fully statistically independent (see the supplementary text B.2). In the
special case of marginally uniform firing rate distributions, the copula is
identical to the population’s joint firing rate distribution, and mere uncor-
relatedness of the neurons corresponds to jointly uniform, and thus statisti-
cally independent, outputs. The choice of the marginal membrane potential
distribution thus defines what aspect of the copula synaptic weights can
influence, whereas the marginal output distribution defines what can be
revealed about it through (linear) correlation coefficients or Hebbian learn-
ing. This conceptual separation of the marginal distributions, on which the
adaptive neurons operate, and the copula, which captures the full interrela-
tion of neurons due to their related inputs and synaptic connections, allows
us to better analyze the effects of intrinsic and synaptic plasticity and their
interaction.

2.1.5 Hebbian Plasticity. In the adaptive network model, a generalized
rate-coding model of Hebbian plasticity (cf. the activity product rule pro-
posed by Brown, Kairiss, & Keenan, 1990) updates synapses connecting
a presynaptic source with a postsynaptic target according to a product
of their respective activations. Generally, assuming a synaptic interaction
delay τ (i, j), the weight W (i, j) of a synapse that connects a source j with
activation Y ( j)

t to a target i with activation Y (i)
t is updated according to a

multiplicative rule of the form

dW (i, j)
t = δ( fpre(Y ( j)

t−τ (i, j) ) · fpost(Y
(i)
t ) − W (i, j)

t )dt, (2.7)

where δ is a synaptic learning rate and fpre and fpost model the potentially
nonlinear dependency of the weight updates on the pre- and postsynaptic
activations. The specific choice of fpre and fpost allows adapting the synaptic
plasticity rule to the chosen marginal distribution of neural activations or
tuning it to learn different nonlinear correlations. For example, by choosing
fpre and fpost to be the cumulative distribution functions of pre- and post-
synaptic activity, respectively, Hebbian learning can be set to approximate
Spearman’s rank correlation (Genest & Favre, 2007), whereas setting both
to the identity function makes the learning rule approximate simple covari-
ance between pre- and postsynaptic activation. Various choices for fpost are
discussed by Brito and Gerstner (2016), leading to the discovery of sparse
codes, whereas the emergence of principal or independent components can
be proven for the specific choices fpost(x) = x2 or fpost(x) = x3, respectively,
in linear model neurons with constrained weights (Hyvärinen & Oja, 1998;
Oja, 1982). It should be noted that these rules consider activations rather
than membrane potentials, which is crucial here, since only the activation
is subject to the effects of intrinsic adaptation.
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A Unifying Framework of Synaptic and Intrinsic Plasticity 955

For the simulation experiments presented here, both functions are set to
simply subtract the mean activation ȳ = E[Yt] enforced by intrinsic plas-
ticity, such that uncorrelated firing at the mean rate leads to no synaptic
growth. Transmission delays are neglected, resulting in the simple Hebbian
learning rule

dW (i, j)
t = δ(s(Y ( j)

t − ȳ) · (Y (i)
t − ȳ) − W (i, j)

t )dt. (2.8)

For strictly inhibitory synapses, weights are constrained to W < 0 and s < 0
is chosen, resulting in a form of anti-Hebbian learning (Földiák, 1990).

2.2 The Full Network Model. The dynamics of a neuron i within the
adaptive network can be summarized in the most general form by equa-
tions 2.9 to 2.12, whereas a synaptic weight from neuron j to i adapts ac-
cording to equation 2.13:

I( j)
t ← external input or Y ( j)

t , (2.9)

dX (i)
t = a(X (i)

t )dt + b(X (i)
t )

∑
j

W (i, j)
t I( j)

t−τ (i, j) dt, (2.10)

dφ̄
(i)
t = γ (η(X (i)

t ) − φ̄
(i)
t )dt, (2.11)

Y (i)
t = ν

φ̄
(i)
t

(X (i)
t ) = (F−1

Y ◦ FX,φ̄
(i)
t

)(X (i)
t ), (2.12)

dW (i, j)
t = δ( fpre(Y ( j)

t−τ (i, j) ) · fpost(Y
(i)
t ) − W (i, j)

t )dt. (2.13)

Here, superscripts denote neurons, It is an input signal (either external or
the output of another neuron), Xt is the membrane potential, φ̄t is the empir-
ical estimate of the membrane potential’s sufficient statistics η̄ = E[η(Xt )],
Yt is the neuron’s activation,Wt is the matrix of synaptic connection weights,
and γ and δ are the learning rates of intrinsic and synaptic plasticity, respec-
tively.

In the following, specific instances of this model are used, where the
membrane potential is modeled by leaky integration; inputs are themselves
assumed to be stationary, Markovian, mean-reverting stochastic processes
with either gaussian, Laplacian, or beta distribution, the marginal output
distribution is chosen to be log-gaussian, log-Laplacian, or uniform; synap-
tic delays are neglected; and simple Hebbian learning is employed. In the
cases shown here, equations 2.10 and 2.13 take the form:

dXt
(i) = (−θX (i)

t +
√

2θ
∑

j

W (i, j)
t I( j)

t )dt, (2.14)

dW (i, j)
t = δ(s(Y ( j)

t − ȳ) · (Y (i)
t − ȳ) − W (i, j)

t )dt, (2.15)
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956 J. Leugering and G. Pipa

Table 1: Parameterization of Different Neuron Models.

Gaussian → Laplacian → Laplacian →
PX → PY log-Gaussian log-Laplacian Beta → Uniform log-Gaussian

η(x):
(

x
x2

) (
x

|x − αt |
) (

x
x2

) (
x

|x − αt |
)

νφ̄t
(x): exp

(
x−αt
βt

)
exp

(
x−αt
βt

)
Ix(αt , βt ) F−1

Y (FX (x; αt , βt ))

where αt : (φ̄t )0 (φ̄t )0
(φ̄t )2

0(1−(φ̄t )0 )√
(φ̄t )1−(φ̄t )2

0

− (φ̄t )0 (φ̄t )0

and βt :
√

(φ̄t )1 − (φ̄t )2
0 (φ̄t )1 α((φ̄t )−1

0 − 1) (φ̄t )1

where ȳ is the expected value of the activation distribution, θ is the mem-
brane potential time constant, and s is a scaling factor. The function η defin-
ing the sufficient statistics η̄ and the activation functions ν resulting from the
different choices of membrane potential and activation distributions used
in this paper are listed in Table 1.

In the simulations presented here, the inputs to the model neurons are
either outputs from other neurons, pixel intensities of image patches, or
artificially generated colored noise. Noise stimuli with an exponential au-
tocorrelation structure and stationary gaussian distribution are generated
by Ornstein-Uhlenbeck processes in the form of equation 2.16, whereas a
Laplacian stationary distribution is produced by stochastic processes as
given by equation 2.17:

dIt = γ (μt − It )dt + σt

√
2γ dBt (2.16)

dIt
( j) = γ (μt − It )dt + σt

√
γ (1 +

√
2|It |
σt

)dBt . (2.17)

The functions μt and σt above are the (possibly time-varying) mean and
standard deviation of the noise stimuli.

In some simulations, to ensure that multiple neurons within a population
represent different aspects of their inputs, lateral inhibition is employed,
such that one neuron inhibits all others, the next neuron inhibits all but the
first, and so on. These inhibitory synaptic weights are trained via simple
anti-Hebbian learning (Földiák, 1990) according to rule 2.15 with a negative
scaling constant s < 0 and constrained to remain negative. This connectiv-
ity structure introduces a strict ordering of decorrelated neurons without
imposing recurrent connectivity on the population.

3 Results

To illustrate the properties of the model described above, we present three
simulation examples.
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A Unifying Framework of Synaptic and Intrinsic Plasticity 957

3.1 Intrinsic Plasticity in Isolation. First, consider a gaussian model
neuron with a leaky integrating membrane potential as given in equation
2.14, driven by a single gaussian process as given by equation 2.16. Dur-
ing simulation, the mean μt and standard deviation σt of the gaussian
input signal are changed at three points in time, resulting in four time inter-
vals in each of which the membrane potential exhibits a different stationary
gaussian distribution. We estimate the sufficient statistics of the respective
membrane potential distributions through the two adaptation variables αt

and βt (see Table 1, gaussian → log-gaussian), both of which change on a
timescale much slower than the autocorrelation in the membrane potential
process.

During simulation, the sufficient statistics, as well as the Kullback-
Leibler divergence between the neuron’s estimated and real membrane
potential distribution, are tracked and aggregated over 100 trials. This
equivalently measures the divergence between the desired, log-gaussian
output distribution and the one actually achieved by the neuron (see sup-
plementary text A.5 for a derivation).

The results are summarized in Figure 2. Evidently the model neurons
reliably adapt to the various input statistics on a timescale determined
by the dynamics of the adaptation variables, as well as the dynamics of
the membrane potential. For an analytical derivation of the adaptation
dynamics, we again refer you to the supplementary text A.4. The result
illustrates that using the estimated membrane potential statistics in the
parameterized activation function allows the neuron to compensate for
sudden changes in the input distribution and maintain the neuron’s desired
output distribution.

3.2 Interaction between Intrinsic and Synaptic Plasticity. While the
ability of individual neurons to adapt to changes in their environment as
illustrated in the previous experiment is arguably a very useful feature by
itself, our primary interest lies in the interaction of such plastic neurons
with plastic synapses. We present two variations of an experiment inspired
by Hyvärinen and Oja (1998) and Savin et al. (2010) to illustrate how the
interaction of both plasticity mechanisms can drive individual neurons to
become selective to a transformation-invariant representation of their mul-
tivariate input by discovering a principal or independent component. We
are able to reproduce these results using only intrinsic plasticity and Heb-
bian synaptic plasticity as discussed above and need not rely on a third,
distinct mechanism of synaptic scaling as suggested there. For both condi-
tions, we provide a detailed fixed-point analysis of the synapse dynamics in
the presence and absence of intrinsic plasticity and show theoretically how
independent component analysis emerges (only) from the complementary
contributions of intrinsic and synaptic plasticity. To this end, we use plastic-
ity operating on two distinct timescales: a fast-acting form of intrinsic firing
rate adaptation that renders the neurons invariant to changes in the scale of
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958 J. Leugering and G. Pipa

Figure 2: Adaptation of a model neuron to changing input distributions. Top:
Stationary distributions of the gaussian membrane potential process (dashed
lines) during four stages of the simulation (color-coded backgrounds) and the
respective distributions estimated by the neuron’s adaptation parameters at
the end of each interval (filled histograms). Rows 2 and 3: Time course of the
adaptation variables α and β, estimating the first and uncentered second mo-
ment of the membrane potential process, respectively. Across 100 trials, mean
(solid red lines) and standard deviation (error bars) of the activation parame-
ters are shown. The true moments (dashed gray lines), as well as the analytical
values attainable via causal exponential filtering of sufficient statistics (dashed
black lines), are provided for reference (see supplementary text A.4 for a deriva-
tion). Row 4: Trace of the Kullback-Leibler divergence between underlying and
estimated membrane potential or, equivalently, desired and realized output dis-
tribution (solid black line). See supplementary text A.5 for an analytical deriva-
tion. For reference, the divergence for a hypothetical nonadaptive neuron with
identical initial parameter values is given (dashed gray line). Bottom: Desired
log-gaussian (dashed black line) and achieved (filled histograms) distributions
of activation at the end of each time interval. For reference, the distributions of
activation resulting from the same input distributions are given for a nonadap-
tive neuron with identical initial parameter values (dashed gray line).
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A Unifying Framework of Synaptic and Intrinsic Plasticity 959

their membrane potentials and much slower-acting Hebbian plasticity that
adapts the weight vectors projecting into the neuron.

In both simulations, consider two independent source signals modeled
by stationary stochastic processes. The source signals are mixed into two
different linear combinations by multiplying the two-dimensional signal
vector st with a mixing matrix M, here chosen to be the rotation matrix
with an angle of 0.3π . The transformed signal vector It = M · st is then pro-
jected into two adaptive neurons through a matrix of adaptive synaptic
weights Wt . The process driving the two adaptive neurons is thus given
by Wt · It = Wt · M · st . Recovering the two original source signals such that
Wt · It = st requires finding the matrix Wt → M−1 without knowing M. This
problem is accordingly referred to as blind source separation (Keziou, Fen-
niri, Messou, & Moreau, 2013). Since the sources here represent statistically
independent signals, this can be realized through independent component
analysis (Hyvärinen & Oja, 2000, short: ICA). In both simulations, the co-
variance matrix of both neurons’ membrane potentials 
t = WtM(WtM)T

is determined by the constant mixing matrix M and the time-varying

weight matrix Wt . In particular, the variance σ
(i)
t

2 = (
t )i,i = w
(i)
t M(w(i)

t M)T

of each neuron i’s membrane potential is given as a function of the cor-
responding row w

(i)
t of Wt , that is, the vector of weights projecting into

neuron i. At each point in time, the effect of the fast-acting intrinsic plas-
ticity, which renders the neurons invariant to changes in their marginal
membrane potential variances, can thus be modeled as a normalization

of each membrane potential: Y (i)
t ≈ ν( X (i)

t

σ
(i)
t

). This effect of intrinsic plastic-

ity is equivalent to synaptic scaling (Turrigiano, 2008), albeit implemented
within the neuron without explicit knowledge of the weight vector, rather
than changing the weight vector itself. For each weight vector w

(i)
t , this

makes it possible to theoretically derive the vector field of expected weight

changes E[ dw
(i)
t

dt ] from the Hebbian weight update equation 2.7, identify
fixed points, and prove convergence. A corresponding vector field in the
absence of intrinsic plasticity can be derived in strict analogy, only re-
placing the normalization of the membrane potential by a scaling with
a constant independent of the weight vector: Y (i)

t ≈ ν(c · X (i)
t ). An analyti-

cal derivation of attractor landscapes can be found in the supplementary
text C.2.

We show that the basic Hebbian plasticity rule, which updates synaptic
weights according to equation 2.15 based on the pre- and postsynaptic activ-
ities It and Yt , respectively, can achieve blind source separation if and only
if paired with intrinsic plasticity. By recovering the original independent
sources, the neurons become invariant to the mixing effect of an (orthogo-
nal) transformation M, illustrating a network-level form of invariance due
to plasticity. Thus, multiple neurons can develop a nonredundant, informa-
tion theoretically efficient representation of their multidimensional inputs
(Isomura et al., 2015).
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960 J. Leugering and G. Pipa

3.2.1 PCA in Individual Neurons. For the first experiment, assume the
sources to be gaussian with different variances. The model neurons are
chosen to map gaussian membrane potentials to log-gaussian activations.
Over time, we trace the evolution of the synaptic weights under the in-
fluence of synaptic and intrinsic plasticity and observe that both weight
vectors rapidly align themselves with the largest eigenvector of the co-
variance matrix of the joint membrane potential distribution. As a conse-
quence, both neurons become tuned to the first principal component of the
two-dimensional input, which corresponds to the one recovered original
source with largest variance. The magnitude of the resulting weight vec-
tors is equal for both neurons. The top-left panel of Figure 3 summarizes
these results, and the two panels on the top right confirm that due to plas-
ticity, the empirical distributions of the membrane potential and activation
approach the desired distributions at the end of the simulation.

To understand these results, the respective roles of intrinsic and synaptic
plasticity must be analyzed. Hebbian synaptic plasticity as employed here
drives the synaptic connections to maximize postsynaptic activations. Due
to the nonlinear relationship, here exponential, between membrane poten-
tial and activation, more dispersed stimuli are more effective at driving the
neuron to fire at high rates, since large, positive deviations of the membrane
potential are amplified, whereas similar negative deviations are attenuated.
(For a precise derivation of how changes in higher-order moments of the
membrane potential distribution affect the neuron’s mean firing rate due to
its nonlinear activation function, see the supplementary text C.1.) Hebbian
plasticity thus rotates the weight vectors toward those directions in input
space where dispersion is maximized. Here, for the example of gaussian sig-
nals, where all moments beyond the second vanish and due to the activation
function’s strong sensitivity to the second moment, they correspond to the
directions of the principal components, ordered by the associated eigenval-
ues. In the absence of intrinsic plasticity, synaptic scaling, or other stabiliz-
ing mechanisms such as the BCM rule (Bienenstock et al., 1982), such a rule
invariably leads to instability. Here, however, fast-acting intrinsic plasticity
stabilizes Hebbian plasticity by keeping the post-synaptic neuron’s output
distribution constant, independent of the magnitude of the current weight
vector, thus constraining synaptic growth. The choice of the desired activa-
tion distribution of the neuron thus indirectly determines the stable length
of the weight vector resulting from Hebbian plasticity, as well as the speed
and reliability of convergence to the principal components.

The bottom left panel of Figure 3 shows the attractor landscape of the
Hebbian learning procedure, which exhibits two stable solutions, each
corresponding to a weight vector aligned with the first principal compo-
nent and an unstable fixed point at 0, pushing weight vectors to non triv-
ial solutions. As indicated by the domains of attraction, a single neuron
with Hebbian synapses and intrinsic plasticity converges to either of two
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A Unifying Framework of Synaptic and Intrinsic Plasticity 961

Figure 3: Principal component analysis realized by two plastic neurons with
Hebbian synapses. The top-left panel shows, color-coded for each neuron, the
weight vectors evolving over time, from their respective starting values indi-
cated by a star to final values indicated by a circle. Dashed lines mark the
standard basis, and solid straight lines represent eigen directions of the input
covariance matrix. The jointly gaussian input distribution is represented by ran-
dom samples (gray dots) and an iso-probability ellipse. The two panels on the
top right show empirical and analytically expected or desired probability den-
sities of the first neuron’s membrane potential Xt and its activation Yt . The right-
hand panel presents the absolute inner angle in radians between each weight
vector (color-coded) and the first principal component direction as a function of
time. The bottom-left panel presents the adaptation of the weight vectors in the
phase space of the Hebbian learning rule (see equation 2.15) under the influence
of IP for the given input distribution. The weight vectors converge to either of
the two stable fixed points (filled circles), depending on the domain of attraction
(coded by background color), and diverge from the trivial solution at (0, 0). On
the separatrix, two saddle points emerge (half-filled circles). The bottom-right
panel, for comparison, shows the phase space and example weight trajectories
resulting from synaptic plasticity alone in the absence of intrinsic plasticity.
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962 J. Leugering and G. Pipa

representations of the first principal component of the input, recovering
the source signal with larger variance. The temporal dynamics and stability
of the adaptation procedure are illustrated in the second row panel on the
right side of Figure 3, where the angles between each weight vector and the
direction of the first principal component (PC1) are plotted as a function of
time. After quickly rotating toward PC1, the weight vectors remain stable at
an angle close to 0, demonstrating the long-term stability of the solution. To
illustrate the crucial role of intrinsic plasticity for stabilizing Hebbian learn-
ing, the bottom right panel of the same figure shows the phase space and
weight vector trajectories from identical starting positions in the absence of
intrinsic plasticity. For the parameters chosen here, both initial conditions
now lie within the domain of attraction of a stable fixed point at the trivial
solution (0, 0).

3.2.2 ICA in Individual Neurons. The perspective gained from the previ-
ous example can be transferred to a more interesting experiment presented
by Savin et al. (2010). Consider now that the two sources are identical, inde-
pendent nongaussian (here Laplacian) processes, which are again mixed by
the same matrix M and projected onto adaptive neurons through a matrix
of adaptive synaptic weights Wt . Applying the same reasoning as in the pre-
vious example, Hebbian learning paired with intrinsic plasticity leads the
neuron to discover those projections of the input signal that result in the
most dispersed membrane potentials. However, due to the fact that now
their covariance matrix itself is orthogonal, any normed linear combination
of the inputs has the same variance, and thus no particular unique princi-
pal components can be defined. As a consequence, the original source sig-
nals cannot be recovered using any method such as PCA that takes only
the second moment, that is, the covariance matrix, into account. However,
since the input signals are now no longer gaussian, higher-order moments
beyond the variance, such as kurtosis, can be taken into account to define
unique directions of maximum dispersion. In the example presented here,
the source signals’ marginal Laplace distributions are leptokurtic, showing
a higher kurtosis than any normalized linear combination of the two. The
independent components (ICs), maximizing kurtosis, thus correspond to
the demixed original source signals.

Since the nonlinear activation function is also sensitive to higher mo-
ments beyond the variance (see the supplementary text C.1), the neural
adaptation procedure in this case selects the directions that maximize kurto-
sis and thus discovers the most prominent independent component, which
corresponds to one demixed source signal. (See Figure 4 for a summary
of the results.) To demonstrate that both neurons, due to different initial
weight vectors, truly discover independent components, the top-right panel
of Figure 4 shows the copula function of both neurons at the beginning and
end of the simulation, converging to a uniform distribution that indicates
statistical independence (rather than mere uncorrelatedness).
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A Unifying Framework of Synaptic and Intrinsic Plasticity 963

Figure 4: Independent component analysis realized by two plastic neurons
with Hebbian synapses. The top-left panel shows, color-coded for both inde-
pendent components of the input, the weight vectors evolving over time from
their respective starting values indicated by a star to final values indicated by
a circle. Dashed lines mark the standard basis, and solid straight lines mark
the basis rotated by 0.3π . The joint input distribution is represented by random
samples (gray dots) and an iso-probability diamond. The two plots on the top
right show the copula between both neurons at the beginning and end of learn-
ing. The bottom-left panel presents the adaptation of the weight vectors in the
phase space of the Hebbian learning rule (see equation 2.15) under the influence
of IP for the given input distribution. The weight vectors converge to any of the
four stable fixed points (filled circles), depending on the domain of attraction
(coded by background color), and diverge from the trivial solution at (0, 0). On
the separatrices, four saddle points emerge (half-filled circles). The bottom-right
panel, for comparison, shows the phase space and example weight trajectories
resulting from synaptic plasticity alone in the absence of intrinsic plasticity.
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964 J. Leugering and G. Pipa

3.2.3 PCA and ICA in Populations. In the two experiments above, we
consider the extreme cases where either no unique independent compo-
nents can be defined, because the kurtosis of the gaussian inputs is 0, or no
unique principal components can be defined, as the covariance matrix of
the Laplacian inputs is the identity. In each case, a neuron then recovers the
appropriately defined dominant component, a principal component or an
independent component, respectively. Since the nonlinear activation func-
tions chosen here depend on both second- and third-order moments (and
more), this raises the question of whether, in the presence of both princi-
pal and independent components, a model neuron would select the former,
the latter, or neither, instead converging to a compromise between the two.
For an exponential activation function, the optimal solution maximizes a
weighted combination of all moments of the neuron’s membrane potential,
with lower moments being the most influential (see supplementary text
C.1). While dominant principal components are thus strongly favored by
the adaptation procedure, independent components or yet other directions
could coexist as stable solutions.

In order for a population of adaptive neurons to implement either PCA,
ICA, or any other transformation-invariant representation of the popula-
tion’s input signals, it is crucial that individual neurons reliably become
selective to different components. In the presence of strongly dominant
components, as shown in the first example, different initial conditions alone
are insufficient to ensure that different principal or independent compo-
nents are discovered.1 To mitigate this problem, lateral strictly inhibitory
synapses with scale parameter s = −5 are placed between the adaptive neu-
rons and updated via anti-Hebbian learning as outlined in section 2.2.

For two Laplacian source signals as in the previous example, we vary the
mixing coefficients to realize three different scenarios in which the direc-
tions of maximum dispersion change from favoring principal components
to favoring independent components. In all three cases, we train adaptive
neurons mapping the Laplacian inputs to log-gaussian outputs and trace
the weight vectors under the effect of Hebbian and intrinsic plasticity. (See
Figure 5 for a summary of the results.) In accordance with expectations,
the lateral decorrelation forces neurons to discover different components
of the inputs in a predictable manner. While one adaptation variable em-
ulates synaptic scaling by controlling the membrane potential’s variance,
the other compensates for the imbalance between feedforward activation
and the combined effect of feedforward and lateral inhibition by control-
ling the mean. The identities of the extracted components by each neuron

1If it were the case that an individual neuron, depending on its initial weight vector,
would select a nondominant component, this would be considered a flaw of the algorithm,
as in that case, it could not be ensured that the most relevant components of the input are
discovered.
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A Unifying Framework of Synaptic and Intrinsic Plasticity 965

Figure 5: PCA and ICA in a population of four laterally decorrelated adaptive
neurons with Hebbian synapses. Gray dots represent samples of the bivariate
stochastic input process, solid black lines show iso-probability contours, dashed
black lines show principal component directions, and dotted black lines rep-
resent independent component directions. Colored lines show trajectories of
weight vectors learned by the neurons, with a star marking the initial and a cir-
cle marking the final value. On the left, all four neurons converge to both prin-
cipal components with alternating signs. In the middle, two neurons converge
to the dominant principal component, whereas the other two converge to the
dominant independent component, all with alternating signs. On the right, all
four neurons converge to both independent components with opposing signs.

may change under nonorthogonal transformations, but the resulting repre-
sentation of the input learned by the population is invariant with respect to
further orthogonal transformations of the input.

3.3 Learning Representations of Image Patches. Finally, to demon-
strate the generality of the results discussed thus far on high-dimensional
data, we present a network of the same structure as above, evaluated on
two different data sets of image patches of size 28 × 28 pixels. For each pixel,
an adaptive “sensory neuron” is trained to map its input, the correspond-
ing pixel’s intensity (plus a small noise term) scaled to the range from 0
to 1, which we assumed to be distributed according to a beta distribution,
onto a uniformly distributed activation in the range from −0.5 to 0.5. These
marginally uniform activations are subsequently used as stimuli and pro-
jected through Hebbian synapses onto five adaptive neurons that are later-
ally decorrelated via anti-Hebbian synapses in the same manner as in the
previous example with a relative weight scale of s = −3. The neurons are
chosen to map gaussian inputs to log-gaussian activations and thus exhibit
the same exponential activation function as discussed previously. Each im-
age patch is presented for a simulated time of 50 ms, and the total simula-
tion time is 150,000 s at discretization steps of 1 ms each. Time constants of
the neurons’ membrane potentials are set to 5 ms, and adaptation rates for
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966 J. Leugering and G. Pipa

Figure 6: On the left, from top to bottom, we show five random sample patches,
the first five principal components of the stimuli, the first five independent com-
ponents extracted by FastICA, and the weights learned by the five neurons of
the population. On the top right, the final weight matrix of lateral inhibitory
synapses is shown. The bottom right contains the resulting correlation ma-
trix between the five neurons’ activations. Evidently the population discovers
mostly uncorrelated principal components. (Image patches courtesy of Winder
& Impressive Machines LLC, N.d.)

intrinsic, anti-Hebbian, and Hebbian plasticity are set to 10 s, 100 s, and
200 s, respectively.

First, a freely available collection of 500,000 natural image patches
(Winder & Impressive Machines LLC, N.d.) is used, where the model neu-
rons are shown to become selective to principal components, rather than
independent components as extracted using an implementation of the Fas-
tICA algorithm (Hyvärinen & Oja, 2000; Pedregosa et al., 2011). For a sum-
mary of the results, see Figure 6. Due to the unstructured nature and
translation-invariant statistics of the natural image patches, this result is in
line with our expectations. Since the inputs to the adaptive neurons violate
the assumption of gaussianity, intrinsic plasticity fails to achieve identical
variance in the activation of all neurons but still succeeds in stabilizing Heb-
bian plasticity. The discrepancy between the assumed gaussian membrane
potential distribution and the sparser observed distributions resulting from
the neurons’ discovery of nongaussian components could be alleviated by
using a more general membrane potential distribution family such as the
generalized normal distribution, which contains both gaussian and Lapla-
cian distributions as special cases. Here, however, we restrict ourselves to
the much simpler assumption of gaussian membrane potentials, for which
closed-form expressions of the sufficient statistics exist.
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A Unifying Framework of Synaptic and Intrinsic Plasticity 967

Figure 7: On the left, from top to bottom, we show five sample images, five
principal components of the stimuli, the average stimuli for each of five classes,
and the weights learned by the five neurons of the population. On the top right,
the final weight matrix of lateral inhibitory synapses is shown. The bottom right
contains the resulting correlation matrix between the five neurons’ activations.
Evidently the population discovers mostly uncorrelated representations of the
classes. (MNIST patches courtesy of LeCun, Cortes, & Burges, N.d.)

Second, an identical network with the same parameters as in the previ-
ous case is used with 60,000 image patches of the same size from the MNIST
database of handwritten digits (LeCun, Cortes, & Burges, N.d.). (For a sum-
mary of the results, see Figure 7). Due to the structuredness of the sample
images, components representing the class averages emerge as the learned
weights rather than principal components. In an unsupervised fashion, the
population thus learns a sparse representation of its inputs. This result is
in line with a prediction made by Triesch (2007), who proposes that in a
high-dimensional learning problem with clustered data, the relative contri-
bution of each cluster on a neuron’s activation can be approximated by the
expected activation in a corresponding percentile of the activation distribu-
tion.2 In this case, a neuron optimally tuned to respond strongly to a single
cluster out of the 10 available can be heuristically expected to exhibit the
10% of its highest firing rates in response to inputs drawn from its favored
cluster, resulting in an expected activation of yfav = EPY [Y|F−1

Y (0.9) < Y] in
response to that class. Assuming that intrinsic plasticity successfully en-
forces the desired activation distribution PY with mean ȳ = EPY [Y], the ratio
yfav

ȳ could be viewed as a measure of selectivity toward a dominant class,

2Assuming that cluster centers are linearly independent and equally frequent.
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968 J. Leugering and G. Pipa

which can be predetermined by an appropriate choice of activation distri-
bution. As the neuron’s mean activation drives Hebbian learning of its input
synapses, this selectivity in the neuron’s response to specific input classes
is proportionally reflected in its synaptic weights. For a log-gaussian dis-
tribution with parameters μ = 0 and σ = 1 as used here, a well-tuned neu-
ron could thus be expected to show an overall mean activation of ȳ ≈ 1.65
with a mean activation of yfav ≈ 6.42 in response to its favored class input.
For comparison, a neuron with enforced exponential activation distribu-
tion of equal mean could be expected to respond with a mean activation of
yfav ≈ 5.45 to its favored cluster and would thus be slightly less selective
for a unique class. For the first neuron in the numerical simulations above,
the empirical results at ȳ ≈ 1.86 and yfav ≈ 9.82 even exceed the heuristic
predictions, implying that the neuron is indeed highly selective to a sin-
gle cluster mean, in this case corresponding to the digit 0. The discrepancy
between theoretical prediction and numerical results may be attributed to
several compounding effects, such as temporal dynamics of the stochastic
processes used here, high intraclass variability, or the correlatedness of the
cluster centers of the MNIST digits, which make a direct quantitative com-
parison between numerical results and theoretical predictions difficult.

In both cases discussed, convergence to the final solution is quick, with
components converging one by one in the sequence determined by the lat-
eral inhibition structure, and the discovered representation remains stable
over the remainder of the simulation. As the learned components reflect the
structure present in the stimuli, the population’s representation of its input
is thus invariant to (orthogonal) transformations in the 784-dimensional in-
put space, as any such transformation of the input space is counteracted by
an according adjustment of synaptic weights and intrinsic excitability.

4 Discussion

Our numerical results confirm the theoretical conclusion that a population
of adaptive neurons, implementing only local mechanisms of intrinsic and
synaptic plasticity, can realize homeostatic self-regulation that renders it
invariant with respect to affine-linear/orthogonal transformations of its
multivariate input. This is here achieved by the recovery of independent or
principal components, but could be similarly realized by finding any other
arbitrary but uniquely defined representation of the population’s input. For
clustered inputs, the activation distribution could be chosen in accordance
with a heuristic outlined by Triesch (2007), such as to achieve a certain speci-
ficity in the neurons’ response to specific clusters and thus enforce a sparse
code.

The generality of the model allows the implementation and combination
of various other forms of invariance, even where gradient-based methods
might become prohibitively complex. For example, the stochastic mem-
brane potential process with its parametric stationary distribution can be
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A Unifying Framework of Synaptic and Intrinsic Plasticity 969

chosen freely, so that its sufficient statistics resemble the properties we wish
the neuron to become invariant to, such as higher-order moments.

Nonlinear forms of Hebbian plasticity as discussed by Brito and Gerstner
(2016) could be used to learn sparse input representations other than inde-
pendent or principal components. Additionally, a concave nonlinear depen-
dency on the postsynaptic activation could act to further stabilize Hebbian
learning by slowing synaptic growth at high firing rates, thus allowing for
much slower intrinsic adaptation to compensate.

By including interaction delays in the synapse model, synaptic plasticity
could be used to influence not just the instantaneous correlation structure
between neurons but the full auto- and cross-correlation structure in time.
By choosing different time constants for different adaptation variables, mul-
tiple timescales of adaptation can be modeled, a phenomenon observed in
vivo (Fairhall et al., 2000; Turrigiano, 2008). Here, only a combination of
slow Hebbian plasticity with fast intrinsic plasticity, as could be realized
by rapidly acting homeostatic mechanisms such as spike rate adaptation
or the accumulation or depletion of neurotransmitters, is discussed. How-
ever, biological evidence suggests that in particular, slow intrinsic adapta-
tion (Turrigiano, 2008) and fast-changing weights (Zucker & Regehr, 2002)
should be studied. Instead of the artificially constrained topology of lat-
eral connectivity, which is used here to demonstrate the recovery of (only)
dominant components, random sparse connectivity could be used in a suf-
ficiently large network to find a similar, overcomplete, and invariant repre-
sentation of the population’s input.

Despite the generality of our results, we make several assumptions that
should be asserted. First, intrinsic plasticity here operates on membrane
potentials only. While rate-based or spike-triggered adaptation could be
included, we abstain from doing this due to the complexity of the re-
sulting model. Second, the neuron model is rate based; spiking effects
could be included only via point or renewal processes with time-varying
rate functions. This constrains the scope of spike timing effects and thus
spike timing–dependent plasticity mechanisms that can be incorporated
into the model. Third, intrinsic adaptation effects are not modeled as part of
the membrane potential itself but rather as separate adaptation variables,
similar to, for example, the adaptive exponential model (Gerstner & Brette,
2009), and can thus be observed only by their effect on the neurons’ output
behavior. Fourth, for the derivation of adaptation dynamics, the sufficient
statistics that the neurons become invariant to are assumed to be twice dif-
ferentiable for mathematical convenience, despite this not being a necessary
condition. Fifth, the restriction of membrane potentials to (locally) station-
ary diffusion processes, albeit still very general, may be overly restrictive
for some applications where synaptic inputs exhibit more structure, such
as neurons driven by a low number of incoming spikes. In such cases, a
different class of processes should be used. Finally, the model is stated here
in the limiting case, where changes to the parameters of the neurons’ in-
puts occur so slowly or rarely that the resulting membrane potentials can
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be assumed to be locally or piece-wise stationary. When adaptation vari-
ables and input statistics evolve on similar timescales, this assumption is
violated; the separation between input processes and their (slowly chang-
ing) parameters breaks down, and some of the arguments presented here
can no longer be directly applied. In a machine learning context, this prob-
lem is commonly referred to as concept drift (Tsymbal, 2004), and adaptive
networks might be well capable of coping with it. In this regime of very fast
adaptation, intrinsic plasticity might no longer stabilize neural activations
but could instead endow neurons with a local estimate of membrane po-
tential statistics, potentially increasing their dynamic range (Fairhall et al.,
2000; Fairhall, Lewen, Bialek, & de Ruyter Van Steveninck, 2001). This re-
mains to be studied in future work.

In ongoing work, we explore whether a simple choice of intrinsic plas-
ticity, resulting in scale invariance, can be used to stabilize activity in
sensory neuron populations, deep feedforward and recurrently connected
networks, thus improving information transmission as suggested by Turri-
giano and Nelson (2004). This effect could potentially complement or re-
place specifically crafted inherently stable (deep) feedforward networks
(see Klambauer, Unterthiner, Mayr, & Hochreiter, 2017, for example) by ad-
dressing the problem of vanishing gradients, a pressing issue in the field of
deep learning.

Conversely, despite the hypothesized stabilizing effect of intrinsic plas-
ticity in feedforward networks, pathological recurrent connectivity could
potentially lead intrinsic plasticity to actively destabilize a network. Such
pathological network behavior needs to be studied to discover limitations
and possible undesired sideeffects of plasticity and could potentially pro-
vide some theoretical insight into neurological conditions such as epilepsy.

Finally, in order to assert the biological compatibility of the abstract
mathematical model presented here, the biophysical mechanism underly-
ing plasticity needs to be tied to adaptation variables, and a reasonable class
of membrane potential processes and instantaneous firing rate distributions
needs to be determined from biological evidence to guide modeling choices.

Appendix A: Mapping Stochastic Processes

A.1 Preliminaries.

Lemma 1 (Itô’s lemma, theorem 4.2.1. of Øksendal, 2003). For a function
u ∈ C1,2([0,∞] × R

m,Rk) and an m-dimensional stochastic Itô process Xt, the
transformation Yt = u(t, Xt ) is a k-dimensional Itô process that can be expressed
as

duk(t, Xt ) = δuk

δt
(t, Xt )dt +

∑
i

δuk

δxi
(t, Xt )dXi

t

+ 1
2

∑
i, j

δ2uk

δxiδx j (t, Xt )dXi
t dX j

t .
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A Unifying Framework of Synaptic and Intrinsic Plasticity 971

For linear transformations u, we see that stochastic differentials preserve
linearity. A special case of this lemma is:

Corollary 1. For a one-dimensional process Xt and a time-invariant function u,
Itô’s lemma yields

du(Xt ) = u′(Xt )dXt + 1
2

u′′(Xt )(dXt )2 (A.1)

=
(

u′(Xt )a(t, Xt ) + 1
2

u′′(Xt )b(t, Xt )2
)

dt + u′(Xt )b(t, Xt )dBt,

(A.2)

which is an Itô process as well.

Lemma 2 (stationary distribution, theorem 4.68 of Capasso & Bakstein,
2015, and section 3.2 of Stepanov, 2013). Let Xt be a stationary diffusion process
of the form

dXt = a(Xt )dt + b(Xt )dBt

with sufficiently regular functions a and b > 0.3 Then the density of the stationary
distribution is (up to a scaling factor) given by

f ∞
X (x) ∝ 1

b(x)2 exp
(∫ x

0

2a(y)
b(y)2 dy

)
.

Using corollary 1 and lemma 2, the properties of a specific process, the
Ornstein-Uhlenbeck process, can be derived.

Lemma 3 (Ornstein-Uhlenbeck process). Let Xt be a one-dimensional Itô pro-
cess of the form

dXt = θ (μt − Xt )dt + σt

√
2θdBt,

where θ > 0, σ > 0. We call Xt an Ornstein-Uhlenbeck process (Stepanov, 2013,
section 2.6). For an initial condition X0, its solution is given by

Xt = exp (−θt)X0 +
∫ t

0
θ exp (θ (s − t))μsds

+
√

2θ

∫ t

0
exp (θ (s − t))σsdBs.

3The conditions are quite general yet very technical and can be found in Capasso and
Bakstein (2015, theorem 4.56).
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972 J. Leugering and G. Pipa

For constant μt , σt , it is a stationary process with stationary gaussian distribution
with mean μt and autocovariance E[Xt1 · Xt2 ] = σ 2

t exp (−θ |t1 − t2|).
Proof. Let Xt be as defined. We apply Itô’s lemma to define X̃t = u(t, Xt )
with u(t, x) = exp(θt)x and simplify:

dX̃t = θ exp(θt)Xtdt + exp(θt)dXt

= θ exp(θt)μtdt + exp(θt)σt

√
2θdBt .

Rewriting the stochastic differential equation above as stochastic integrals
gives

X̃t = X0 +
∫ t

0
θ exp(θs)μsds +

∫ t

0
exp(θs)σs

√
2θdBs

⇒ Xt = exp(−θt)X0 +
∫ t

0
θ exp(θ (s − t))μsds

+
√

2θ

∫ t

0
exp(θ (s − t))σsdBs.

For a proof of stationarity and the full autocorrelation function, see, for ex-
ample, Stepanov (2013, section 2.9).

Using lemma 2, it follows that the stationary distribution of Xt has the
gaussian density

f ∞
X (x) ∝ 1

b(x)2 exp
(∫ x

0

2a(y)
b(y)2 dy

)
(A.3)

= 1
2θσ 2

t
exp

(
− (x − μt )2

2σ 2

)
, (A.4)

∝ 1√
2πσ

exp
(

− (x − μt )2

2σ 2

)
(A.5)

= N (μt, σ
2
t ). (A.6)

�

When the above process Xt is driven not by white noise but an integrable
time-varying function It (i.e., the solution of another stochastic process),
a solution of Xt can be equivalently derived where integration is not per-
formed with respect to the differential dBs but instead with respect to Isds.

A.2 Deriving a Nonlinear Activation Function.

Lemma 4. Let Xt denote a stationary Itô diffusion process and let f ∞
X denote

the density of the corresponding stable distribution P∞
X . Choose a monotonically
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A Unifying Framework of Synaptic and Intrinsic Plasticity 973

increasing function ν ∈ C2(R). Then Yt = ν(Xt ) is again a stationary Itô process
with a stable distribution P∞

Y that has the density

f ∞
Y (y) ∝ (ν−1)′(y) f ∞

X (ν−1(y)),

where we use (ν−1)′(y) = dν−1(y)
dy to denote the derivative of ν−1 with respect to y.

Proof. Given ν as above and a diffusion process of the form

dXt = a(Xt )dt + b(Xt )dBt,

Itô’s lemma implies for Yt = ν(Xt ) that

dYt =
(

ν ′(Xt )a(Xt ) + 1
2
ν ′′(Xt )b(Xt )2

)
dt + ν ′(Xt )b(t, Xt )dBt (A.7)

= ã(Yt )dt + b̃(Yt )dBt, where (A.8)

ã(y) = ν ′(ν−1(y))a(ν−1(y)) + 1
2
ν ′′(ν−1(y))b(ν−1(y))2 (A.9)

= a(ν−1(y))
(ν−1)′(y)

− (ν−1)′′(y)
2((ν−1)′(y))3 b(ν−1(y))2, (A.10)

b̃(y) = ν ′(ν−1(y))b(ν−1(y)) = b(ν−1(y))
(ν−1)′(y)

. (A.11)

Using lemma 2 on the stationary processes Yt and Xt allows us to derive the
relationship between the two stationary densities f ∞

X and f ∞
Y :

f ∞
Y (y) ∝ 1

b̃(y)2
exp

(∫ y

0

2ã(x)
b̃(x)2

dx
)

(A.12)

= 1
b̃(y)2

exp
(∫ y

0

2a(ν−1(x))
b(ν−1(x))2 (ν−1)′(x)dx

−
∫ y

0

(ν−1)′′(x)
(ν−1)′(x)

dx
)

(A.13)

= 1
b̃(y)2

exp

(∫ ν−1(y)

0

2a(x)
b(x)2 dx

+
∫ 0

ν−1(0)

2a(x)
b(x)2 dx − [log((v−1)′(x))]y

0

)
, (A.14)

∝ (ν−1)′(y)
1

b(ν−1(y))2 exp

(∫ ν−1(y)

0

2a(x)
b(x)2 dx

)
, (A.15)
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974 J. Leugering and G. Pipa

∝ (ν−1)′(y) f ∞
X (ν−1(y)). (A.16)

�
Corollary 2. Let F∞

X denote the cumulative distribution function (CDF) of P∞
X ,

and let FY denote the CDF of an arbitrary distribution PY. Define ν
def= F−1

Y ◦ F∞
X . If

PY is continuous with density fY, then the distribution P∞
Y from lemma 4 is equal

to PY with density f ∞
Y = fY .

Proof. For ν as defined, it follows that

ν−1 = (F∞
X )−1 ◦ FY, (A.17)

(ν−1)′ = (((F∞
X )−1)′ ◦ FY ) · fY (A.18)

= fY
f ∞
X ◦ (F∞

X )−1 ◦ FY )
(A.19)

= fY
f ∞
X ◦ ν−1 . (A.20)

Then by lemma 4,

f ∞
Y (y) ∝ (ν−1)′(y) f ∞

X (ν−1(y)) = fY (y)
( f ∞

X ◦ ν−1)(y)
( f ∞

X ◦ ν−1)(y) = fY .

This proves that ν = F−1
Y ◦ F∞

X indeed maps a process with stationary
distribution P∞

X onto a process with the arbitrarily chosen stationary
distribution PY . �

A.3 Autocorrelation of Filtered OU Process. Assuming that the in-
put into the leaky integrating membrane potential Xt of the simple neuron
model with μt = 0 and σt = σX is not Brownian motion but instead another
(OU) process It (see lemma 3) with autocorrelation function

E[It1 · It2 ] = σ 2
I exp(−γ |t1 − t2|),

then the resulting autocorrelation function R(t1, t2) for Xt with X0 = 0 is de-
termined by the stochastic input It and can be derived as follows (we as-
sume t1 = t0, t2 = t0 + 
t , 
t ≥ 0):

R(t1, t2) = E[Xt1 · Xt2 ] (A.21)

= E

[ (√
2θ

∫ t1

0
exp(θ (s − t1))σXIsds

)

·
(√

2θ

∫ t2

0
exp(θ (s − t2))σXIsds

) ]
(A.22)
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A Unifying Framework of Synaptic and Intrinsic Plasticity 975

= 2θσ 2
X

exp(θ (t1 + t2))

∫ t1

0

∫ t2

0
exp(θ (s1 + s2))E[Is1 Is2 ]ds2ds1 (A.23)

= 2θσ 2
Xσ 2

I

exp(θ (t1 + t2))

∫ t1

0

∫ t2

0
exp(θ (s1 + s2) − γ |s1 − s2|)ds2ds1

(A.24)

= 2θσ 2
Xσ 2

I

exp(θ (t1 + t2))

∫ t1

0

[
exp(s1(θ − γ ))

∫ s1

0
exp(s2(θ + γ ))ds2

+ exp(s1(θ + γ ))
∫ t2

s1

exp(s2(θ − γ ))ds2

]
ds1 (A.25)

= 2θσ 2
Xσ 2

I

exp(θ (t1 + t2))

∫ t1

0

[
exp(2s1θ ) − exp(s1(θ − γ ))

θ + γ

+exp(t2(θ − γ )) exp(s1(θ + γ )) − exp(2s1θ )
θ − γ

]
ds1 (A.26)

= 2θσ 2
Xσ 2

I

(θ2 − γ 2)

( (γ

θ
+ 1

)
exp(−t1θ − t2θ ) − γ

θ
exp(−
tθ )

− exp(−γ t1 − θt2) + exp(−
tγ ) − exp(−γ t2 − θt1)
)

.

(A.27)

By considering the limit where both t1 and t2 are far from 0 and t2 − t1 = 
t

and the influence of the initial condition vanishes, this can be simplified to
a stationary autocovariance function:

R(
t ) = lim
t0→∞

E[Xt1 · Xt2 ] (A.28)

= 2σ 2
Xσ 2

I

θ2 − γ 2 (θ exp(−
tγ ) − γ exp(−
tθ )). (A.29)

A direct result from equation A.29 is that the variance of the membrane

potential then is given by R(0) = 2σ 2
Xσ 2

I
θ+γ

.

A.4 Estimating Sufficient Statistics. By Itô’s lemma, transforming the
neuron’s membrane potential process through the nonlinear sufficient
statistics of its membrane potential distribution (assuming they satisfy the
requirements) yields new Itô processes that subsequently can be filtered
with a causal exponential filter. The resulting exponentially weighted run-
ning average approximates the expected values of the sufficient statistics.
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976 J. Leugering and G. Pipa

Suddenly changing parameters of the membrane potential distribution
takes effect on the membrane potential with a certain delay due to con-
tinuity of the membrane potential. Filtering a transformation introduces
further delay. The dynamics of adaptation variables are in the following an-
alytically derived for the special case of membrane potentials modeled by
the Ornstein-Uhlenbeck process defined in lemma 3. Let Xt be an Ornstein-
Uhlenbeck with time-varying mean and standard deviation μt and σt . We
consider an adaptation variable αt = ∫ t

0 γ exp(γ (s − t))Xsds. For τ �= γ > 0
and for X0 = 0, we can use the deterministic part of the solution Xt as de-
fined in lemma 3 to derive the expectation

E[αt] =
∫ t

0
γ exp(γ (s − t))

∫ s

0
θ exp(θ (r − s))μrdrds (A.30)

=
∫ t

0

∫ s

0
θγ exp(s(γ − θ )) exp(−γ t + θr)μrdrds (A.31)

=
∫ t

0

∫ t

r
θγ exp(s(γ − θ ))ds exp(−γ t + θr)μrdr (A.32)

=
∫ t

0
κ (t − r)μrdr (A.33)

= (κ � μ)(t), (A.34)

with κ (x) def= γ θ

γ − θ

(
exp(−θx) − exp(−γ x)

)
. (A.35)

The causal filter κ here is a valid probability density with mean∫ ∞
0 xκ (x)dx = 1

γ
+ 1

θ
. We thus see that the adaptation variable αt approx-

imates the membrane potential’s true mean value, lagging behind with a
delay on the scale of 1

γ
+ 1

θ
. A similar derivation can be done for the second

adaptation variable, βt = ∫ t
0 γ exp(γ (s − t))X2

s ds. The larger the two time
constants θ and γ are chosen, the smoother, yet slower, the resulting adap-
tation variables approximate the true sufficient statistics. The noise in the
adaptation variable αt can be estimated by considering its variance, which,
as calculated as in section A.3, is proportional to 2σ 2

X
θ+γ

and approaches 0
for a sufficiently slow adaptation time constant γ . We conclude that the
proposed mechanism of estimating sufficient statistics via filtering is valid
and asymptotically correct, and it follows the dynamics derived here. See
Figure 2 to verify the match between derived and simulated adaptation
parameter dynamics.

A.5 Approximation Quality of Adaptive Neurons. To measure the
quality of an adaptive neuron’s temporary estimate f φ̄t

X of the current
stationary membrane potential distribution f ∞

X , the Kullback-Leibler
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A Unifying Framework of Synaptic and Intrinsic Plasticity 977

divergence D( f φ̄t
X || f ∞

X ) between the two can be used. This measure is very
informative, since it simultaneously represents the mismatch between the
neuron’s produced and desired activation distributions:

Lemma 5. Let f ∞
X denote the stationary probability density of an adaptive

neuron’s membrane potential with parameters η̄t , and let f φ̄t
X denote the neuron’s

estimate of the same density, instead parameterized by the neuron’s adaptation vari-
ables φ̄t . Further, let f ∞

Y denote the neuron’s desired stationary distribution of acti-
vation and f φ̄t

Y the distribution achieved by the adaptive neuron. Then the neuron’s
activation distribution approaches the desired distribution if and only if its esti-
mated membrane potential distribution approaches the true membrane potential
distribution and

D( f φ̄t
X || f ∞

X ) = D( f ∞
Y || f φ̄t

Y ).

Proof. Let ν be the monotonous, continuous activation function of the
neuron with support (a, b) = limx→∞(ν(−x), ν(x)) that maps f φ̄t

X → f ∞
Y and

f ∞
X → f φ̄t

Y ; then:

D( f φ̄t
X || f ∞

X ) =
∫ ∞

−∞
f φ̄t
X (x) · log

(
f φ̄t
X (x)

f ∞
X (x)

)
dx (A.36)

=
∫ b

a
f φ̄t
X (ν−1(y)) · log

(
(ν−1)′(y) f φ̄t

X (ν−1(y))
(ν−1)′(y) f ∞

X (ν−1(y))

)
(ν−1)′(y)dy

(A.37)

=
∫ b

a
f ∞
Y (y) · log

(
f ∞
Y (y)

f φ̄t
Y (y)

)
dy (A.38)

= D( f ∞
Y || f φ̄t

Y ). (A.39)
�

How well the desired distribution of activation can be achieved thus cru-
cially depends on how well the neuron’s adaptation parameters can ap-
proximate the sufficient statistics of the membrane potential distribution.
Since the divergence on both membrane potential and activation side of the
neuron is identical, we just refer to the divergence between neurons.

Using lemma 5, the divergence between two gaussian neurons can be
calculated based on the membrane potential distribution’s sufficient statis-
tics and the corresponding approximation by the adaptation variables,

η̄ =
(

E[X]
E[X2]

)
=

(
μ

σ 2 + μ2

)
?≈ φ̄t =

(
αt

βt

)
.
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978 J. Leugering and G. Pipa

The Kullback-Leibler divergence is then defined as follows:

D( f φ̄t
X || f ∞

X ) =
∫ ∞

−∞
f φ̄t
X (x) · log

(
f φ̄t
X (x)

f ∞
X (x)

)
dx (A.40)

=
∫ ∞

−∞
f φ̄t
X (x) · log

⎛
⎜⎝ σ exp

(
− (x−α)2

2(βt−α2
t )

)
√

βt − α2
t exp

(
− (x−μ)2

2σ 2

)
⎞
⎟⎠ dx (A.41)

= log

⎛
⎝ σ√

βt − α2
t

⎞
⎠ +

∫ ∞

−∞
f φ̄t
X (x)

·
(

− (x − α)2

2(βt − α2
t )

+ (x − μ)2

2σ 2

)
dx (A.42)

= log

⎛
⎝ σ√

βt − α2
t

⎞
⎠ − 1

2
+ 1

2σ 2

∫ ∞

−∞
f φ̄t
X (x)

· (x2 − 2xμ + μ2)dx (A.43)

= log(σ ) − 1
2

log(βt − α2) + (μ − αt )2 + ((βt − α2
t ) − σ 2)

2σ 2 .

(A.44)

We see that this converges to 0 for αt → E[X] = μ and βt → E[X2] = σ 2 +
μ2.

A.6 Effects of the Choice of Activation Distribution. The choice of
membrane potential distribution and activation distribution together deter-
mines the resulting activation function. While the computational role of the
neuron is often explained based on the nonlinearity used, the distributions
allow a different perspective. Consider first a discrete, bimodal probabil-
ity distribution of activations, where the activation is either at a high, fixed
value v with probability p or a 0 with probability 1 − p. The expected acti-
vation or firing rate then is v · p, and the neuron switches between periods
of high firing rates (bursts) and periods of low firing rates.

Due to the continuous nature of the membrane potential process, the pe-
riods of bursting can be expected to be dense, measurable intervals, which
allows us to understand the neuron as a bursting neuron. Depending on the
time constants of the membrane potential dynamics, these intervals could
represent longer or shorter bursts of spikes. For sufficiently high rates v and
low p with a constant mean firing rate v p, the timing of spikes can be made
precise, in particular if renewal processes with refractoriness are used to
sample spikes, limiting the number of spikes per interval. The shape of the
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A Unifying Framework of Synaptic and Intrinsic Plasticity 979

distribution of firing rates thus allows influencing the temporal precision
of spiking and controls the amount of noise introduced into spike trains
sampled by an inhomogeneous Poisson process. For this example, the cor-
responding cumulative distribution function, and thus the nonlinearity, are
step functions, and the neuron switches between stochastic bursting and si-
lence. For continuous activation distributions, similar observations can be
made. Highly curtotic distributions, where the mean is much larger than the
median, are dominated by rare yet disproportionately high firing rates and
can thus best be viewed as encoding such rare events that elicit high mem-
brane potentials (coincidences). Depending on the spike sampling mecha-
nism used, different distributions might yield optimal information trans-
mission through spiking output.

Appendix B: Copulas and Joint Distributions

B.1 Preliminaries.

Lemma 6 (Copulas, Sklar’s theorem; see Embrechts et al., 2001). For an N-
variate continuous random variable X with joint cumulative distribution function
F and invertible marginal cumulative distribution functions Fi, the copula function
C : [0, 1]N → R

+ can be defined as follows:

C(u) = P(F1(X1) ≤ u1, . . . , FN(XN ) ≤ uN ) (B.1)

= P(X1 ≤ F−1
1 (u1), . . . , XN ≤ F−1

1 (uN )) (B.2)

= F(F−1
1 (u1), . . . , F−1

1 (uN )) (B.3)

⇔ F(x) = C(F1(x1), . . . , FN(xN )). (B.4)

Except information about the marginals, the copula thus contains all infor-
mation about the joint distribution.

Corollary 3 (copulas and densities). Using lemma 6 and the chain rule, a con-
tinuous N-dimensional probability distribution with joint density f , marginal den-
sities fi > 0, and marginal continuous distribution functions Fi can be decomposed
into the product

f (x) = c(F1(x1), . . . , FN(xN ))
∏

i fi(xi), (B.5)

where c(x) = ∂NC(x)
∂x1···∂xN

is the copula density.

Lemma 7 (marginal invariance of copulas). Let X be an N-variate continuous
random variable with copula CX and let ν1, . . . , νN be monotone functions. Then
Y = (ν1(X1), . . . , νN(XN )) and X have the same copula CY = CX.

Proof. Let CX , FX and FX
i be the copula, joint, and marginal CDFs of X, re-

spectively, and let CY , FY , and FY
i be the copula, joint, and marginal CDFs of
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980 J. Leugering and G. Pipa

Y, respectively. Then FX
i (x) = P(Xi ≤ x) = P(Yi ≤ ν(x)) = FY

i (ν(x)) and ap-
plying lemma 6 twice yields

CX (u) = P(FX
1 (X1) ≤ u1, . . . , FX

N (XN ) ≤ uN ) (B.6)

= P(FY
1 (ν(X1)) ≤ u1, . . . , FY

N (ν(XN )) ≤ uN ) (B.7)

= P(FY
1 (Y1) ≤ u1, . . . , FY

N (YN ) ≤ uN ) (B.8)

= CY (u). (B.9)
�

B.2 Dependency of the Copula of the Joint Distribution of Activation
on the Covariance of Gaussian Inputs. For a population of neurons driven
by jointly gaussian input, the joint membrane potential distribution is de-
termined by the stochastic input, particularly the covariance matrix R of its
stationary distribution. The variance of each neuron i’s membrane potential
is equal to the variance of the signal driving the neuron, scaled down by a
constant that depends on the dynamics of the input and the membrane po-
tential process (see section A.3 for a derivation). Due to the invariance of the
copula to marginal transformations, as guaranteed by lemma 7, the station-
ary distribution of the neurons’ joint activation thus has the same copula
C as the joint membrane potential distribution and the joint input distribu-
tion. The stationary, multivariate gaussian input process with covariance
matrix R has a gaussian copula (Embrechts et al., 2001) of the following
form, where � denotes the standard gaussian CDF:

cR(u) = 1√|R| exp

⎛
⎜⎜⎝−1

2

⎛
⎜⎝

�−1(u1)
...

�−1(uN )

⎞
⎟⎠

T

(R−1 − I)

⎛
⎜⎝

�−1(u1)
...

�−1(uN )

⎞
⎟⎠

⎞
⎟⎟⎠ .

(B.10)

Given cR, which depends on only the covariance matrix R of the station-
ary joint distribution of the signals driving a population of neurons and
marginal probability densities of the neurons activation, the joint distribu-
tion of activation in a population is thus fully specified.

B.3 Inducing Structure through Input Weights. In a population, where
N neurons receive input signals via weighted synaptic connections W from
different source signals, which are jointly gaussian processes with station-
ary covariance matrix R̃ of rank ≥ N, the signals driving the neurons are
also jointly gaussian with stationary covariance matrix R = WR̃WT . De-
composing the (pos. def.) matrix R̃ = R̃′ · R̃′T (e.g. using the Cholesky-
decomposition), the weight matrix could be chosen as W = R̃′−1 (if more
input signals than neurons are available, a pseudo-inverse could be used
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A Unifying Framework of Synaptic and Intrinsic Plasticity 981

here). The resulting covariance of the signals driving the population is then
given by

R = WR̃WT = R̃′−1(R̃′R̃′T )(̃R′−1)T = (R̃′−1R̃′)(R̃′−1R̃′)T = I, (B.11)

that is, the neurons are completely decorrelated. For a desired covariance
matrix Q, the same decomposition into Q = Q′ · Q′T can be used to define
a weight matrix W = Q′−1R̃′−1, which results in the stationary covariance
matrix:

R = (Q′R̃′−1)R̃(Q′R̃′−1)T = Q′(R̃′−1R̃R̃′−T )Q′T = Q′Q′T = Q. (B.12)

By choosing the synaptic connection weights accordingly, arbitrary covari-
ance structures can thus be induced in the input signals driving the neurons,
assuming that at least as many uncorrelated input signals are available as
there are neurons in the population. Using the results from section B.2, this
implies that for gaussian inputs, any activation distribution with a gaussian
copula can be realized by an appropriate choice of marginal distributions
and synaptic weights.

The same reasoning can be applied across time, rather than neurons,
when considering the autocovariance of a single neuron instead of the co-
variance between different neurons. If the autocovariance structure of a
gaussian membrane potential process across different points in time is mod-
eled by a multivariate gaussian distribution, it can again be decomposed
into a (gaussian) copula and marginal distributions. The copula is preserved
under the nonlinear transformation through the neuron’s activation func-
tion and thus captures the autocovariance structure of its activation process
as well. By adding multiple weighted synaptic connections with different
delays for a single source signal, the autocovariance can be controlled in the
same way as the covariance is controlled above.

Combining these two approaches, a set of weighted, delayed synaptic
connections can be used to induce cross-covariance structures in the neu-
rons’ inputs and thus membrane potentials and activations.

Appendix C: PCA and ICA in Single Neurons

C.1 Sensitivity of Nonlinear Neurons to Higher Moments. Let X be
a random variable with mean μ, and let ν : R → R

+ be a monotonically
increasing function that is infinitely differentiable at μ. We consider the ex-
pected value of the output random variable Y = ν(X ). Then by using the
Taylor-series expansion of ν around μ, we can see that the expected value
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E[Y] depends on the centered moments mi of X:

E[Y] = E

[ ∞∑
i=0

f (i)(μ)
i!

(X − μ)i

]
(C.1)

=
∞∑

i=0

αimX
i (C.2)

where αi = f (i)(μ)
i!

(C.3)

mX
i = E[(X − μ)i]. (C.4)

For a linear function, higher-order coefficients are αi≥2 = 0, and the ex-
pected value of the output depends on only the first and zero-order mo-
ment. For polynomials of order M, all moments up to order M influence the
expected output of the function. For a general exponential function ν(x) =
exp(ax + b) with parameters a and b, all coefficients αi = ai

i! exp(aμ + b) are
positive and form a decreasing sequence that converges to 0. In this case,
the expected value of the output Y is a linear combination of all centered
moments mi of X with rapidly decreasing weights. For a gaussian random
variable X, where the mean and all moments beyond the second are fixed
at zero, the expected value of the output Y is thus dominated by the second
moment, the variance, whereas for a zero mean, unit covariance Laplacian
distribution the third and higher moments influence the expected value of
Y. The relative dependence of a function’s expected output Y on the mo-
ments of X is determined by the coefficients of its Taylor expansion (if it
exists).

C.2 Fixed-Point Analysis of the PCA and ICA Neurons. A neuron that
receives input from a multivariate stochastic process It with stationary co-
variance matrix 
 through synaptic connections with weight vector wt has a

membrane potential process Xt with standard deviation σwt = c ·
√

wt
wT
t ,

where the proportionality constant c depends on the dynamics of the pro-
cesses Xt and It (see also section A.3). We assume here that the membrane
potential exhibits very fast adaptation dynamics and closely follows the
much slower input process It (we choose time constants θX = 100, θI = 10),
such that Xt ≈ c · wt It

t . The activation of a neuron is given by Yt = νφt (Xt ),
where for a nonadaptive neuron, φt is constant, and we just writeYt = ν(Xt ).
An adaptive neuron that compensates only for the changes in the scale
of its membrane potential such as the gaussian or Laplacian models used
here (the mean is fixed in these experiments) can thus be modeled by Yt =
νσwt

(Xt ) = ν( Xt
σwt

). Using equation 2.15, the vector field of expected weight
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changes can be calculated for an adaptive neuron:

E[
dw

(i)
t

dt
] = E

[
δ(I(i)

t · Yt − w
(i)
t )

]
(C.5)

≈ δ

⎛
⎝E[I(i)

t · ν(
wt IT

t√
wt
wT

t

)] − w
(i)
t

⎞
⎠ . (C.6)

Similarly, a nonadaptive neuron yields

E

[
dw

(i)
t

dt

]
≈ δ

(
E[I(i)

t · ν(c · (wt IT
t )] − w

(i)
t

)
. (C.7)

Since the stationary joint distribution of It is explicitly given in both
experiments (a multivariate gaussian or a product distribution of two in-
dependent Laplace distributions, rotated by 0.3π), these expectations can
be analytically calculated for the two neuron types (adaptive and nonadap-
tive) in both conditions (gaussian and Laplacian inputs). Locations of fixed
points can be found where expected weight changes vanish to zero. The
bottom panels of Figures 3 and 4 show the calculated vector field for both
neuron types in both experimental setups, respectively.
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ABSTRACT

Many behavioural tasks require an animal to integrate information on a slow timescale that can
exceed hundreds of milliseconds. How this is realized by neurons with membrane time constants on
the order of tens of milliseconds or less remains an open question. We show, how the interaction of
two kinds of events within the dendritic tree, excitatory postsynaptic potentials and locally generated
dendritic plateau potentials, can allow a single neuron to detect specific sequences of spiking
input on such slow timescales. Our conceptual model reveals, how the morphology of a neuron’s
dendritic tree determines its computational function, which can range from a simple logic gate to
the gradual integration of evidence to the detection of complex spatio-temporal spike-sequences on
long timescales. As an example, we illustrate in a simulated navigation task how this mechanism can
even allow individual neurons to reliably detect specific movement trajectories with high tolerance
for timing variability. We relate our results to conclusive findings in neurobiology and discuss
implications for both experimental and theoretical neuroscience.

Author Summary

The recognition of patterns that span multiple timescales is a critical function of the brain. This is a conceptual
challenge for all neuron models that rely on the passive integration of synaptic inputs and are therefore limited to the
rigid millisecond timescale of post-synaptic currents. However, detailed biological measurements recently revealed
that single neurons actively generate localized plateau potentials within the dendritic tree that can last hundreds
of milliseconds. Here, we investigate single-neuron computation in a model that adheres to these findings but is
intentionally simple. Our analysis reveals how plateaus act as memory traces, and their interaction as defined by the
dendritic morphology of a neuron gives rise to complex non-linear computation. We demonstrate how this mechanism
enables individual neurons to solve difficult, behaviorally relevant tasks that are commonly studied on the network-level,
such as the detection of variable input sequences or the integration of evidence on long timescales. We also characterize
computation in our model using rate-based analysis tools, demonstrate why our proposed mechanism of dendritic
computation cannot be detected under this analysis and suggest an alternative based on plateau timings. The interaction
of plateau events in dendritic trees is, according to our argument, an elementary principle of neural computation which
implies the need for a fundamental change of perspective on the computational function of neurons.

Introduction1

The ability to detect long-lasting sequences of neural activity is crucial for complex behavior, but poses a serious2

challenge for most established neuron models. Consider a rodent navigating through an environment in search for3

food. Receptive fields of place and grid cells tile a spatial map of the environment and encode the current position by4

their respective population activities [1, 2]. But in order to find its way back, the animal needs to know not only its5

present location, but also which path it took to get there. Decoding this path from the sequential activation of place and6

grid cells requires the integration of information on behavioural timescales that can span hundreds of milliseconds or7

∗Both authors contributed equally.
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more [3, 4]. Relevant patterns on such long timescales may prove to be a ubiquitous phenomenon, and have already been8

documented for a wide range of sensory processing tasks, such as olfaction [5, 6] or cortical auditory processing [7].9

This raises the puzzling question, how such long sequences of neural activity can be processed by volatile neurons10

with membrane time constants on the timescale of tens of milliseconds or less [8]. While this problem is typically11

addressed on a network level, e.g. by relying on effects of fast-acting synaptic plasticity [9] or slow emergent dynamics12

due to recurrent connections [10], we argue that it can be solved on the level of individual neurons by active processes13

within their dendritic trees. These localized processes endow neurons with internal memory traces on the timescale of14

hundreds of milliseconds, and can be captured in a simple, conceptual model that adheres to recent biological evidence15

not accounted for in integrate-and-fire neuron models.16

By investigating the computational properties of neurons with active dendrites, we draw three conclusions.17

Firstly, active dendritic processes can implement complex spatio-temporal receptive fields for ordered sequences of18

synaptic inputs. Secondly, active dendritic processes enable the robust integration of weak signals over timescales much19

longer than post-synaptic responses. Thirdly, when analyzed from a rate-coding perspective, active dendritic processes20

implement sophisticated non-linear computations that are characterized by the neuron’s dendritic morphology.21

We demonstrate these propositions in a general computational framework for event-based, active dendritic sequence22

processing (ADSP), which offers an elegant solution to the problem of detecting highly variable, long lasting patterns in23

a neuron’s input.24

The functional role of active dendritic processes.25

We derive our abstract model of dendritic computation from a few basic biological observations: Most of a cortical26

pyramidal neuron’s excitatory synaptic inputs terminate on dendritic spines [11], where post-synaptic ion channels27

are activated via the stochastic, pre-synaptic release of glutamate-carrying vesicles [12, 13]. The activated channels,28

primarily controlled by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) [14], become29

conductive to a mixture of ions, which leads to a brief depolarization in the corresponding spine, referred to as the30

excitatory post-synaptic potential (EPSP) [15]. These voltage changes in nearby spines induce a modest depolarization31

in the local dendritic membrane potential [16], which passively propagates along the dendrite as described by neural32

cable theory (Fig. 1c). For very specific branching patterns, the passive propagation of activity along a neuron’s dendrite33

can be simplified to an equivalent model of a cylinder, in which the contribution of individual synaptic inputs sum34

(sub-)linearly [17]. Since propagation along the cylinder is very fast, abstract point-neuron models such as leaky35

integrate-and-fire neurons ignore the spatial dimension of the dendritic tree entirely and model the neuron as if it were36

a single electric compartment [18]. However, in this purely passive model of dendritic integration, the attenuation37

of signals along the dendritic cable is so strong, that synaptic input onto thin apical dendrites should have little, if38

any, measurable effect on the membrane potential at the soma far away [19, 20]. A synaptic plasticity mechanism39

that proportionally up-scales synaptic efficacies depending on the synapses’ distance to the soma may counteract this40

phenomenon. Aptly termed “dendritic democracy”[21], it has been shown in hippocampal pyramidal neurons [22],41

where it results in a similar contribution of synaptic inputs onto the somatic membrane potential — regardless of the42

synapse’s position along the dendrite. We instead look at a different mechanism to boost weak synaptic inputs, which43

relies on localized depolarizations that are actively generated and maintained within the dendritic tree.44

Such active dendritic processes are ubiquitous [23, 24] and largely rely on N-methyl-D-asparate receptor (NMDAR)45

gated ion-channels [14] (see Fig. 1c for a schematic representation of this mechanism). NMDAR gated channels, like46

their AMPAR gated counterparts, are activated in the presence of glutamate, but do not become conductive unless a47

channel-blocking Mg+ ion is first displaced by a sufficiently strong depolarization [25, 26]. This depolarization can be48

achieved by the coactivation of multiple AMPAR channels on nearby spines within a short time-window. Experimental49

as well as simulation studies report that this requires a volley of 4-20 or even up to 50 spikes within 1-4ms, depending50

on the location along the dendritic tree [16, 27, 28, 29]. The opening of NMDAR channels triggers a massive influx51

of different ionic currents that lead to a complete depolarization of a small segment of the dendritic arbor. While the52

isolated NMDAR response itself is reported to last on the order of at least 25ms [30], in vivo recordings reveal that53

voltage-gated channels in the dendritic membrane [20] prolong this effect, resulting in a depolarization that can last54

from tens to hundreds of milliseconds [31]. We focus on these longer lasting events, which we collectively refer to as55

dendritic plateau potentials, and argue, that they provide useful memory traces within the dendritic tree that can last56

hundreds of milliseconds.57

The much larger depolarization during a plateau potential propagates further along the dendrite than the weaker effect58

of individual EPSPs and thus extends the range at which they can contribute to somatic action potential generation.59

This may even be required for generating or spiking [32] or bursting [33] output. Just like EPSPs, however, plateau60

potentials are still subject to considerable attenuation along the dendritic cable and thus have a strong effect only in61

2
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their direct neighbourhood2. This leads to a division of complex dendritic arbors into functional subunits [34, 35, 36],62

which we here refer to as dendritic segments. How local plateau potentials in these segments interact within a dendritic63

tree depends on its morphology. In particular, the depolarizing effect on other directly connected dendritic segments64

is effectively raising their resting potential for the whole duration of the plateau potential, thus lowering the amount65

of coinciding spikes required to initiate a plateau potential there [37]. As [38] demonstrates, this local nonlinear66

interaction of dendritic segments due to NMDAR-gated channels can allow neural dendrites to become selective to67

specific sequences of synaptic inputs. While their work uses a biophysical, spatially extended neuron model to explain68

this behaviour, we instead derive a much simplified model composed of discrete dendritic segments. This helps explain69

how local interactions between connected segments lead to cascades of plateau potentials, which in turn allow the70

detection of specific long-lasting sequences within the dendritic tree.71

Each segment of a dendritic tree tends to receive strongly correlated volleys of spikes on clustered synaptic inputs from72

some subpopulation of neurons [39, 40]. We suppose, that such incoming spike volleys constitute elementary events73

that convey relevant information. Then, the morphology of the dendritic tree then determines how this information is74

processed and retained in memory, and thereby endows the ADSP neuron with an intricate computational function.75

The interaction of active dendritic processes realizes event-based computation.76

We construct an abstract mathematical model of active dendritic sequence processing, that is firmly rooted in the77

previous biological observations. Conceptually, the complex dynamics of dendritic membrane potentials are reduced to78

the interactions of two kinds of events, EPSPs and actively generated plateau potentials, in a tree structure of dendritic79

segments. Since both of these events result in localized stereotypical effects on the dendritic membrane potential, we80

abstractly model them simply as rectangular pulses of unit magnitude and fixed duration τsynapse and τdendrite, respectively.81

Because the qualitative behaviour of the dendritic arbor is thus explained purely in terms of the locations and times82

at which EPSPs and plateau potential are initiated in its dendritic segments, our model concisely describes dendritic83

computation.84

Only those incoming spikes that are successfully transmitted by the probabilistic synapses induce EPSPs in the85

postsynaptic segment, which sum up and constitute the total synaptic input into the segment. This input is particularly86

strong when a volley of multiple spikes occurs in a time-window short enough for their EPSPs to overlap. In addition to87

synaptic input, the electric coupling between directly connected dendritic segments provides another source of dendritic88

input.89

When both the synaptic and dendritic input into a segment exceed critical thresholds, the segment enters a prolonged90

plateau state. For the whole duration of the plateau, all other directly connected segments receive depolarizing dendritic91

input. Segments of the dendritic tree therefore act as coincidence detectors that respond to highly synchronized volleys92

of spikes with plateau potentials. The precise thresholds for synaptic and dendritic input depend on the segment’s93

location within the dendritic tree. While a large volley of spikes alone suffices to trigger a plateau in the outermost94

segments of the dendritic tree, internal segments require the additional dendritic input due to plateau potentials in95

connected segments. For segments that lie at branching points in the dendritic tree, more than one of their neighbours96

may have to be in a plateau state concurrently to have a sufficient effect. If the soma, which lies at the root of the97

dendritic tree, receives sufficient synaptic and dendritic input, a somatic action potential, rather than a plateau potential,98

is generated.99

Since the small effects of EPSPs remain confined to the postsynaptic dendrite segment, they only affect the neuron’s100

behaviour indirectly by contributing to the generation of local plateau potentials. It is the plateau potentials and their101

interaction across neighbouring segments that drives the dendritic membrane potential, and therefore implements102

an event-based framework of dendritic computation on two distinct timescales orders of magnitude apart. On a fast103

timescale, the combined effect of a volley of coincident spikes initiates a localized plateau potential. On a much slower104

timescale, the interaction of these plateaus provides an ephemeral memory of the recent history. The computation105

we have described here is fully formalized in terms of synaptic spikes and plateau events as provided in the Methods106

section.107

In Fig. 1 we describe an exemplary ADSP neuron that receives input from five populations of neurons on five segments108

(Fig. 1a). Each segment, if sufficiently excited, responds to a spike volley in its respective input populations by emitting109

a plateau event at the time of the volley (Fig. 1b). The morphology of the dendritic tree determines how these plateaus110

interact along the dendritic tree. For example, segment C will only activate if both segments A and B are already active111

once segment C receives a spike volley. We formalize the relative timing requirement for these three segments by112

the expression (A + B) →2 C, which indicates that all two child branches A and B must be simultaneously active113

to enable the parent segment C, allowing it to emit a plateau in response to a spike-volley. We read this as "A and B,114

2Unlike EPSPs, this attenuation cannot be circumvented by synaptic scaling as for dendritic democracy.
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a. d.

e.

f.

c.

b.

A B

C D

E

tA

tC

tE

tB

C

B

A

↧

↧

A

C

B

↧

A

C

B

↧
⊕

biological processes
AMPAr channel
NMDAr channel
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⊕

E
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A

tAtC tE
tB

voltage traces

Figure 1: Schematic representation of a complex dendritic tree and its function. a A neuron receives on each of its
5 dendritic segments 10 synaptic connections from a corresponding neural population. Sufficiently many coincident
spikes (here ≥ 6 out of 10) from population A lead the corresponding dendritic segment to generate a plateau potential
(tA). Similarly, coincident spikes from population B induce a plateau in a parallel branch (tB). A third segment
requires simultaneous input from both of these segments in addition to coincident synaptic input from population C,
in order to fire a plateau of its own (tC). On another branch, a fourth segment receives its input from population D
but does not trigger a plateau. A somatic spike is triggered when coincident synaptic input from population E arrives
(tE) during dendritic input from either of its two upstream segments (in this case C). b Local membrane potentials
show a cascade of plateau potentials. c The steps involved in the generation of a plateau: The membrane potential
is already elevated due to a plateau potential in a neighbouring segment (0). Presynaptic input arrives at a synapse
(1), which leads to a postsynaptic EPSP via AMPAr mediated ion channels (2). Once the local membrane potential is
sufficiently depolarized due to coincident EPSPs and prior depolarization, voltage gated, NMDAr mediated ion channels
open, causing additional depolarization (4) which can be further facilitated by the opening of voltage gated calcium
channels (5). This strong depolarization initiates a longer lasting plateau potential in the dendritic segment, which
has a modest depolarizing effect on other neighbouring segments (6). Different dendritic morphologies correspond to
different computed functions, indicated in the respective formula under each schematic illustration. d If activating one
of two dendritic branches with input from either population A or B, followed by a somatic spike initiated by input from
population C, is sufficient to produce a spike, the neuron implements the operation (A+B)→1 C, which constitutes
an "or"-operation between population A and B. e If simultaneous input from A and B is required, the neuron calculates
an "and"-operation between inputs A and B. f A simple neuron that requires sequential activation of first A "and then"
B before C.

and then C" (see also Fig. 1d). If the threshold was lowered, such that input from either segment A or B alone would115

suffice, the expression would correspondingly become (A+B)→1 C, which translates to "A or B, and then C" (see116

also Fig. 1 e). Generally, the expression (X1 +X2 + . . .+Xn)→m Y translates to "At least m out of the n segments117

X1, X2, . . . , Xn must be simultaneously active to enable segment Y ". By chaining multiple segments together, these118

timing relations and nonlinear combinations can be arbitrarily nested, as for example in Fig. 1f that shows a neuron119

implementing A→1 B →1 C, which we read as "A, and then B, and then C". Using this formal notation, we express120

the complex ADSP neuron example in Fig. 1a as (((A + B) →2 C) + D) →1 E, a computation on spike volleys121

originating from the input populations associated with segments A, . . . , E.122
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The interaction between connected dendritic segments facilitates cascades of plateau potentials along the dendritic tree,123

as illustrated in Fig. 1b. Starting in a distal segment, a leaf-node in our diagrams, a spike volley can initiate a plateau,124

which then provides dendritic input for the parent segment. Next, that segment responds to an incoming spike volley125

with a plateau of its own, in turn providing dendritic input to yet another segment. Whenever such a continuous chain126

of plateau potentials proceeds all the way to the soma, it culminates in a somatic action potential.127

This signals to other neurons, that a specific sequence of spike volleys has been detected – on a timescale that may128

be as long as the number of segments times the plateau duration, i.e. hundreds of milliseconds. The precise timing129

between spike volleys is not prescribed exactly, as long as the distance between two successive volleys does not exceed130

the duration of one plateau potential. This invariance is critical whenever the precise timing of the individual events can131

vary, e.g. due to external circumstances such as varying movement speeds along a path in navigation tasks or due to132

neural mechanisms such as sleep replay [41], because it allows the neuron to generalize over all such perturbations. The133

branching morphology of a dendritic tree therefore determines the computation performed by the neuron, which allows134

even single neurons to detect complex compositions of sequential patterns. This event-based computation is what we135

call active dendritic sequence processing (ADSP).136

Results137

Dendritic processing allows the rapid detection of long, time-invariant patterns138

To demonstrate the implications of such neuronal sequence detection, we return to the example of a rat navigating an139

environment. We assume that the rat has an internal representation of its environment, tiled by the receptive fields of140

distinct populations of place cells. While the animal resides within such a receptive field, the corresponding population141

emits spike volleys with a magnitude that is largest when the animal is close to the center of the receptive field. Different142

paths lead the animal through some of these receptive fields in different order, and result in different sequences of spike143

volleys.144

Each individual spike volley consists of several coincident spikes, the EPSPs of which have to be integrated and145

thresholded on a millisecond time-scale to detect sufficiently significant events in the presence of noise. To detect146

whether the animal has taken a specific path through the environment, only specific sequences of such significant spike147

volleys must be detected on a much slower behavioural time-scale. These two distinct timescales pose a challenge for148

conventional spiking neuron models, which is further exacerbated by the fact, that the precise timing of the spike-volleys149

can vary substantially, depending e.g. on the speed with which the animal traverses its environment. While a solution to150

this problem may be found on a population level, we illustrate in Fig. 2 how a single neuron can implement a solution151

very elegantly with just three active dendritic segments.152

To simulate the rat’s behaviour, we generate random movement trajectories through the environment by a stochastic153

process (see Methods section). Each place-cell population fires spike-volleys with a magnitude determined by the154

population’s tuning-curve, a two-dimensional Gaussian function centered at the population’s preferred location on a155

hexagonal grid. In this example, we are interested in paths that traverse three specific receptive fields, respectively156

color-coded in blue, orange and purple, and hence look at a neuron that consists of a chain of three dendritic segments,157

each receiving input from just one of these place-cell populations (Fig. 2b). The only trajectories that effectively158

drive the neuron to spike are those that sequentially traverse the three receptive fields in the correct order Blue →1159

Orange→1 Purple (Fig. 2a).160

During the example path shown in solid black, the three place cell populations are activated in the correct order over the161

course of 200ms and emit sufficiently large spike volleys to trigger a cascade of plateau potentials that lead the neuron162

to emit a somatic spike Fig. 2b. To illustrate how reliable of a detector an individual neuron can be — even when its163

synaptic inputs are stochastic with a transmission probability of 0.5 —, we systematically evaluate the probability of the164

neuron to fire in response to different paths with varying directions and lateral offsets. For an ideal straight 200ms long165

path through the center of all three place cell populations, the firing probability of the neuron is around 75%. When166

the orientation of the path is varied, this probability sharply decreases to 0%, indicating that the neuron is both highly167

sensitive and highly specific for paths with this orientation (Fig. 2c). Similarly, when the path is shifted orthogonally to168

the movement direction, the response probability falls quickly, confirming that the neuron is sensitive to the absolute169

location of the path as well as its direction (Fig. 2d).170

A remarkable feature of this mechanism is, that it is invariant to changes in the precise timing of the individual volleys171

as long as two consecutive segments are activated within one plateau duration τdendrite of each other. The ADSP Neuron172

can therefore detect paths of any duration from 0ms to Nτdendritems, where N = 3 is the number of consecutive173

segments. We believe this source of timing-invariance to be a highly beneficial feature for generalization that helps174

explain phenomena, where the same sequence of events must be detected across multiple timescales.175
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a. b.

c. d.

Figure 2: A simple neuron with three dendritic segments arranged as shown to the right of panel b can detect directed
paths on a timescale of 300ms. a. The receptive fields of place cell populations tile the environment through which the
animal moves in a hexagonal grid. Random trajectories are generated through a stochastic process with randomized
initial positions, velocities and angular heading to simulate the animal’s movements. b. While the animal follows the
black trajectory through space, the response of the place cell populations’ tuning curves show the sequential activation
of the populations over time (top panel). The stimulus s are generated spikes (middle panel) that lead to a temporal
sequence of dendritic plateaus (bottom panel) and results in a somatic spike as the response r. c. and d. The neuron
responds with high probability to exactly those paths that traverse the desired receptive fields in the correct direction
and with little lateral offset. In the experiment, a change of rotation leads to paths sα (c black) or a shift orthogonal to
the movement direction leads to paths sδ (d black) as indicated by the green arrows. The empirical probability of firing
responses P (r|sα) and P (r|sδ respectively are shown in superimposed density plots in green in polar (c) and Cartesian
(d) coordinates and show a highly specific pattern detector.

6

192
T
hi
s
pu

bl
ic
at
io
n
is

in
cl
ud

ed
as

pu
bl
is
he

d.
Fo

r
ar
ch

iv
e
on

ly
.D

o
no

tr
ed

is
tr
ib
ut
e.



PREPRINT: EVENT-BASED PATTERN DETECTION IN ACTIVE DENDRITES- AUGUST 17, 2020

Plateaus integrate evidence on long timescales176

In the previous example, specific paths are recognized by memorizing the sequential activation of different neural177

populations on a slow behavioural time-scale. A seemingly different, yet in fact closely related problem is the integration178

of individually unreliable bits of evidence over time. Consider, for example, a population of neurons that extract some179

relevant feature of a stimulus, such as the local movement direction in a visual moving dots stimulus. If we assume180

a retinotopic mapping, neighbouring neurons are highly correlated, and whenever the local movement direction is181

apparent, we expect a couple of neighbouring neurons coding for that direction to produce a volley of spikes. However,182

these events are unlikely to occur at the exact same point in time throughout the entire input space. The decision,183

whether or not the visual flow is in a certain direction, therefore requires that a neuron can integrate many such pieces of184

evidence, each indicated by a spike volley event, over a longer time-scale. Despite the all-or-none response of dendritic185

plateaus, a neuron with sufficiently many dendritic segments can in fact approximate such a smooth integration of186

evidence on timescales of hundreds of milliseconds!187

We give an example of evidence integration using dendritic plateau potentials in a simplified experiment, in which a188

neuron with 1000 dendritic compartments receives input from a population of 1000 input neurons through a total of189

20, 000 stochastic synapses (Fig. 3). The weak signal to be integrated by the ADSP neuron is encoded into spike volleys190

of 10 simultaneous spikes from adjacent neurons of the input population. Each dendritic segment of the ADSP neuron191

is connected to a different set of 20 adjacent neurons in the input population, and a total of 300 dendritic segments are192

required be in simultaneous plateau states for the neuron to emit a somatic spike.193

Because each spike volley is likely to activate a different dendritic segment, we expect the number of simultaneously194

active dendritic compartments to reflect the average rate of incoming spike volleys during a time-interval of one plateau195

duration. This corresponds to a filtering of the time-varying rate by a rectangular filter, and, for a brief interval after196

stimulus onset, represents an ideal integrator. We observe this exact behavior by driving the rate, at which spike volleys197

are generated by the input population, to three different levels for brief time-intervals (Fig. 3b, orange line). The number198

of co-activated dendritic segments (blue line) closely follows the theoretical prediction of an ideal rectangular filter199

(black dashed line) until saturation. In particular, during the rising flanks right after stimulus onset (Fig. 3c, d and e.),200

we see the number of co-active segments rise with a slope proportional to the intensity of the stimulus until it saturates201

after 100ms. The neuron begins firing spikes once sufficiently many segments are active (red line). This is exactly the202

behavior expected for evidence integration: The ADSP neuron will fire sooner if the amount of evidence encoded in the203

stimulus is stronger, and will not fire at all if it remains sub-critical.204

Interestingly, the stochasticity of synaptic transmission helps to further decorrelate the partially overlapping input to205

different dendritic segments, and can regulate the total amount of evidence required to reach the neuron’s physiologically206

fixed spiking threshold. Also, while the example here makes use of just a single "layer" of dendritic segments directly207

driving the soma, this idea can be extended to deeper chains of multiple segments, such as in the previous example, to208

allow for the integration of evidence and non-linear combination thereof on timescales even longer than one plateau209

duration.210

Dendritic morphology determines computational function211

In the two previous examples, we assume that each dendritic segment is driven by well-timed volleys of coincident212

spikes, the magnitudes of which represent the magnitude of an underlying signal. But in theoretical neuroscience, the213

function of a neuron is often analyzed in a rate-based framework, which relates only the average firing rate of a neuron214

to the average firing rates of its spiking inputs.215

Applying this sort of analysis to our proposed neuron model reveals, how different morphologies of dendritic arbors give216

rise to different non-linear computations. A dendritic segment driven by independent Poisson spike-trains originating217

from some population A of 25 neurons respond by triggering plateau potentials at a rate %(rA) that continuously depend218

on the fixed firing-rate rA of the populations’ neurons. Here, 8 coincident spikes are required to trigger a plateau. As219

each plateau lasts for 100ms, % saturates at a rate of 10 plateaus per second for large inputs (Fig. 4a). In more complex220

neurons composed of three dendritic segments, each of which is driven by an identical but independent population of221

neurons, we analyze the relative contributions of the populations B and C in the same way. In these experiments, we222

hold the firing rate rA = 25 constant. For a neuron C →1 B →1 A, whose segments are sequentially chained together,223

a spike is generated if and only if both C and B are activated, and in the correct order. The resulting contour-plot, which224

shows how the output firing rate of this neuron scales with both rC and rB , illustrates that both a high firing rate of225

population C and B are required to result in a high firing rate of the neuron (Fig. 4d). This is similar to the neuron with226

two parallel segments (C + B) →2 A (Fig. 4e), only that simultaneous activation of both segments, not sequential227

activation, is required. The shape of this function closely matches an idealized "and" operation (Fig. 4b), the firing rate228

of which can be derived as just the product of the rates at which plateaus are triggered in all dendritic segments:229
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... ...

a.

b.

c. d. e.

Figure 3: Dendritic plateaus can be used to gradually integrate evidence over long time periods. a. A neuron with 1000
dendritic segments is driven by 1000 incoming spike-trains. Embedded in these spike-trains are spike volleys of 10
coincident spikes each, spread across 10 neighbouring neurons (shown in red). b. The rate of spike volleys is determined
by an input signal (organge line). Each segment receives input from 20 consecutive neurons through stochastic synapses
with transmission probability p = 0.5, and requires 5 coincident spikes to trigger a plateau potential. The total number
of co-activated dendritic segments (blue line) follows the convolution of the stimulus signal with a rectangular filter of
length 100ms (black dashed line). c-e. For increasing levels of stimulation, the number of co-activated segments rises
faster and saturates at a higher level, crossing the threshold required for spike initiation (horizontal red line) at an earlier
point in time or not at all, resulting in a sequence of spikes (vertical purple lines).
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a.

d. e. f.

c.b.
A
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⊕
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↧

↧

1

1

C

A

B

↧
⊕ 1

Figure 4: A rate-based analysis reveals well-known computational primitives. a. A single dendritic compartment that
receives independent Poisson-spike trains at a fixed rate rA from a population of 25 neurons responds with plateaus
at a rate that can be expressed as a non-linear sigmoidal function %(rA). For multiple dendritic segments, each of
which receives input from an identical but independent population A,B or C, the neuron’s computation depends on the
dendritic morphology. d and e. If both segments C and B are required to enable a somatic spike, the neuron’s firing
rate is proportional an b idealized "and" operation between the two inputs. f. If either of the two segments suffices,
c the firing rate instead resembles an idealized "or" operation.

%(A,B,C) ∝ τdendrite%(rA)fand(B,C) where fand(B,C) = τ2dendrite%(rC)%(rB)

Here, %(A,B,C) is the firing rate of the neuron, and fand(B,C) is the factor due to the segments B and C.230

For a different dendritic morphology (C +B)→1 A, where a plateau in either segment C or B is sufficient (Fig. 4f),231

we see a response that closely resembles an idealized "or" operation (Fig. 4c):3232

for(B,C) ∝ τdendrite%(C) + τdendrite%(B)− fand(B,C)

For a derivation of fand and for see the Methods section. This rate-based functional description offers a very useful233

abstraction of the neurons’ behaviours, but it necessarily neglects questions of timing. As we saw in the previous234

sections, depending on the morphology, a dendritic arbor can impose stringent requirements on the order in which235

different segments can be activated. For example, while both neurons C →1 B →1 A and (C + B) →2 A require236

strong input from both input population B and C and hence show the same "and"-like response in the rate-coding237

paradigm, the former imposes the constraint that the input from population C must arrive before that from population B238

while the latter does not. Rather than an "and"-like operation, neuron C →1 B →1 A in fact implemented an "and then"239

operation. This is apparent when looking at the joint probability density of the relative timing of dendritic plateaus in240

the respective segments directly preceding a somatic spike (Fig. 5). In particular, if we only consider the unambiguous241

cases of one dendritic plateau each occurring in each segment within a brief window before a somatic spike (shown by242

the white dots (Fig. 5)), we observe that for neuron C →1 B →1 A , a dendritic plateau in segment B can occur at243

most 100ms before the somatic spike and is preceded by a dendritic plateau in segment C by at most another 100ms244

for a maximum total delay of 200ms. In contrast for neuron (C + B) →2 A, both segments must trigger a plateau245

within 100ms to elicit a somatic spike. For neuron (C +B)→1 A, a plateau in either segment within a 100ms window246

suffices to trigger a somatic spike.247

3 As the last equation shows, referring to this operation as an "or" is justified in the sense that the resulting rate is proportional
to the addition of the segments’ individual plateau-firing-rates minus the "and" operation applied to both, which generalizes the
Boolean operation to real values.
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a. b. c.then and or

Figure 5: Dendritic morphology imposes timing constraints not revealed by rate-based analysis. For the neurons shown
in figure 4, the joint probability distribution of relative timings ∆tB ,∆tC of dendritic plateaus directly preceding a
somatic spike at tA show a distinct temporal structure (contour-plots). a. For the "then" neuron, a plateau in segment C
must precede a plateau in segment B by at most 100ms, which in turn must occur at most 100ms before a somatic spike
can be triggered. This is evident by the fact that all unambiguous cases, where exactly one plateau in each segment
C and B was observed before a somatic spike, fall into the corresponding parallelogram-shaped domain (white dots).
b. The "and" neuron shows a similar rate-response to the "then" neuron, but requires both inputs to occur within 100ms
before the somatic spike. c. The "or" neuron only requires either of the populations B or C to trigger a plateau within
100ms before a somatic spike.

Discussion248

In this theoretical study we showed how a well-known biological phenomenon, dendritic plateau potentials, can249

drastically improve the computational capabilities of spiking neurons, turning them into powerful spatio-temporal250

pattern detectors. Due to the long-lasting memory provided by these plateau potentials, it becomes possible for251

individual neurons to integrate evidence or distinguish specific sequences of input on a timescale of hundreds of252

milliseconds – an order of magnitude larger than commonly observed membrane time constants [42]. In our model, the253

morphology of a neural dendrite determines its computational function and, when viewed in a conventional rate-coding254

paradigm, allows an individual neuron to implement a wide range of nonlinear behaviours in a modular and intuitive255

way.256

This is in line with the two-layer neuron model proposed in [43], which used a detailed biophysical simulation of a257

pyramidal neuron to investigate the nonlinear effect on the neuron’s firing rate due to synaptic input at different dendritic258

branches. Using a diverse array of stimuli, they showed that a two-layer network of sigmoidal subunits provides a259

substantially better approximation of the neuron’s firing rate than a linear point-neuron. They speculated, however, that260

the prediction could be improved further, if the nonlinear interactions between the branches were considered, which we261

did here. We also investigated the use of dendritic plateau potentials as long-lasting memory traces, which our results262

revealed to be particularly important for evidence integration and the detection of temporal sequences. Remarkably, our263

drastically simplified and inherently event-based model could qualitatively reproduce properties of the model in [43],264

such as the sigmoidal input-output firing rate response of each dendritic segment and the linear-nonlinear combination265

thereof at the soma (see methods section).266

But on the fast time-scale of individual spikes, our model differs substantially from this and other rate-based point-267

neuron models, since it relies on the detection of volleys of coincident spikes on a millisecond time-scale as the basic268

units of information, which are then integrated on the slower time-scale of dendritic plateau potentials. Our model269

is more closely related to recent work by [44], which proposed the use of active coincidence detection in dendritic270

segments to model prolonged effects of basal dendrites on the soma. A similar line of reasoning can also be found271

in [45], which presented a very elegant two-compartment neuron model and corresponding learning rule with one272

somatic and one dendritic compartment. Both models assign a specific functional role to the (basal) dendrite segments,273

namely to predict subsequent activation at the soma from their local synaptic inputs, which allows individual neurons274

to learn to predict state-transitions (“prospective coding”). Longer sequences are then detected by networks of such275
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laterally connected neurons, endowing the networks with a form of temporal sequence-memory (“hierarchical temporal276

memory”). In our work, we have focused on a more mechanistic model that heavily relies on biological phenomena277

observed in single neurons. This allowed us to describe a neuron’s computational capability concretely as that of a278

sophisticated pattern detector with long-lasting memory, and to illustrate how these mechanisms at play would appear279

under a rate based analysis. We believe our results offer a very appealing explanation of spike-based computation that280

has wider implications in neuroscience and raises several important questions, which we briefly discuss in the following:281

What is the role of inhibition for dendritic computation?282

Our model only takes into account excitatory synapses, but has clear implications for the role of inhibition. The283

all-or-none response of dendritic plateau potentials in our model implies that the only significant effect an inhibitory284

synapse can have on the far-away soma is by either reducing the likelihood of plateaus, preventing the generation of285

plateaus altogether, or by disrupting already ongoing plateau potentials. In the first two cases, an inhibitory synapse’s286

post-synaptic potential must be either well-timed to coincide with the volley of excitatory spikes or exhibit a longer287

time-scale. Experiments suggest that inhibition can affect the ability of dendrites to generate active plateaus and prevent288

them [46]. The disruption of ongoing plateaus has also been reported and analyzed [47] and requires no such precise289

timing a-priori, as long as the spike occurs within the plateau’s duration. Inhibition may, however, exhibit different290

effects depending on when during the plateau processes it is received. In all cases, the likely effect is shunting, rather291

than substractive, inhibition.292

Shunting inhibition can provide an efficient mechanism to improve the computational capabilities of the neurons293

described above, for example as it would allow individual neurons to exclusively respond to a sequence a→ b but not294

to the sequence a→ b→ c, which is impossible for a neuron with purely excitatory synapses. Inhibition may therefore295

play an important and distinct role in ADSP neuron that warrants further investigation.296

What are the implications of this model for plasticity?297

We discussed a fundamental mechanism of dendritic computation and its capabilities, but did not cover the important298

topic of learning and plasticity. Nevertheless, the model presented here imposes constraints on potential plasticity299

mechanisms. Due to the long-lasting plateau potentials, a synaptic input can have a relevant causal effect for a somatic300

spike at a much later time. This makes the temporal assignment of credit for spiking outputs to synaptic inputs301

fundamentally difficult. The timing-invariance shown by our model and the dependency on the complex nonlinear302

dynamics within a dendritic tree further exacerbate this problem.303

The most prominent example of synaptic learning is spike-time dependent plasticity [48], which tunes synaptic efficacy304

based on the relative timing of pre- and post-synaptic activity. Since the active dendritic processes discussed here305

both dominate the post-synaptic membrane potential as well as local Ca2+ concentration, they have a major effect on306

Hebbian plasticity [49, 50].307

This is at odds with the common assumption, that backpropagating action potentials (bAPs) from the soma into the308

dendrite act as the primary post synaptic signal driving synaptic plasticity [51]. Since dendritic plateau potentials309

strongly depolarize dendrite segments for an extended period of time and should similarly “backpropagate” throughout310

the dendritic tree, it seems unlikely to us that bAPs are the primary factor for synaptic plasticity in neurons with active311

dendritic processes. Resolving this inconsistency is an important, but open research question.312

Additionally, our model is based on binary stochastic synapses, and which segment the synapse terminates on plays313

a more important role than its efficacy. We therefore believe that structural plasticity mechanisms are particularly314

relevant for this kind of model. Furthermore, homeostatic plasticity mechanisms, e.g. scaling synaptic transmission315

probabilities[52], are in our view important to ensure that only sufficiently large spike-volleys, but not randomly316

correlated inputs, can reliably trigger plateau potentials.317

Is neuronal computation based on plateau processes?318

Dendritic processes are thought to implement solutions to a number of specific computational problems in neurons [53],319

often distributed across many functional dendritic compartments [54, 55]. Based on convincing biological evidence320

for the mechanism of plateau generation and the interaction of such plateaus, we have argued that they are indeed the321

primary building block for the implementation of behaviorally highly relevant computations. How can this claim be322

experimentally verified or falsified?323

Direct experimental verification, that computation in single neurons is well described by our proposed ADSP neuron324

model requires simultaneous measurement of synaptic inputs and local membrane potentials along a single neuron’s325

dendrite on a fine temporal and spatial resolution over a long-time span.326

As a first step, since our model is driven by incoming spike volleys from multiple intact neuron populations, in vivo327

measurements could verify the existence of patterns of spike-volleys over different timescales using newly developed328
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statistical techniques [56, 57].329

Secondly, a key part of the model, the detection and integration of information across two timescales, one on the order330

of a few milliseconds, the other on the order of a hundred milliseconds or more, can be refuted for any type of neuron331

that achieves this without reliance on active dendritic processes. This may be the case either for neurons incapable of332

generating plateaus in the first place, or if plateau-generating processes have been pharmacologically disabled.333

Thirdly, we predict single neurons that use active dendritic sequence processing to have spatio-temporal receptive334

fields on long temporal timescales, but with high tolerance to variations in the precise timing of individual plateaus,335

qualitatively described in Fig. 2. Because of this invariance, we propose to go beyond linear analysis such as spike-336

triggered averages and instead measure both somatic response, as well as the timing of plateaus across the dendritic337

tree to find structures in the joint distributions as demonstrated in Fig. 5. Experimentally, spatio-temporal receptive338

fields of this kind could also be found by systematically varying stimuli, and should disappear when plateau-generating339

processes are disrupted.340

While we have based our analysis on NMDAr-mediated plateaus in pyramidal cells [20], the same computational341

principle may be found in other neuron types, as well. For example, Purkinje cells in the cerebellum also generate342

localized Ca2+ events in response to coincident input on individual dendritic segments [58, 59], and thalamo-cortical343

neurons respond to strong synaptic input by localized plateaus in distal dendritic branches [60]. This indicates that the344

underlying ADSP mechanism, possibly implemented through diverse means in a case of convergent evolution, may be345

very general and ubiquitous in the brain.346

In summary, we have presented and analyzed an intentionally simple model of neural computation based solely347

on the interaction of coincident spikes and dendritic plateau potentials. This revealed, how the morphology of the348

dendritic tree can implement and compose a wide range of non-linear computational functions. Two key features of this349

computational mechanism are its invariance to exact timings of inputs and its ability to operate on timescales much350

longer than post-synaptic potentials. We have highlighted the importance of the combination of these two features351

in two behaviorally relevant tasks: the detection of sequences and the integration of weak signals on long timescales.352

However, when analyzed from the usual perspective of rate-coding, these computational properties are hard to detect.353

To this end, we have therefore an alternative set of analyses to identify whether computation in single neurons is indeed354

based on dendritic plateaus.355

Methods356

Formal description of the event-based framework for computation in active dendrites357

Mathematically, we approximate both EPSPs and plateau potentials by rectangular pulses with fixed duration τsynapse358

and τdendrite, respectively. Here, we chose τsynapse = 5ms and τdendrite = 100ms for all experiments if not stated otherwise.359

The dynamics of each dendritic segment can then be fully described in terms of the arrival times of incoming spikes360

as well as the times at which plateau potentials are initiated within the segment itself or in other directly connected361

segments. For some segment i, the synaptic input Xi and the dendritic input Yi take the form of equations (1) and (2),362

respectively:363

Xi(t) =
∑
j∈Si

∑
k

χi,j,k · 1[sjk,s
j
k+τsynapse]

(t) where χi,j,k ∼ Bernoulli(ωi,j) (1)

Yi(t) =
∑
j∈Di

∑
k

1[tjk,t
j
k+τdendrite]

(t) (2)

tim+1 = min
{
t ∈ R

∣∣ t ≥ tim + τdendrite, Xi(t) ≥ θsyn
i and Yi(t) ≥ θden

i

}
, (3)

where 1[a,b] represents a unit pulse during the time interval [a, b], and sjk and tij are the times of spikes arriving from364

some presynaptic neuron j and the plateau onset times on segment i, respectively. The random variable χi,j,k represents365

the independent probabilistic transmission of every spike k from source j via a synapse to dendritic segment i, where the366

transmission occurs with the synapse specific probability ωi,j . The sets Si and Di respectively identify the segment’s367

synaptic connections to other neurons and which other dendritic segments it is directly coupled to, and therefore reflect368

the morphology of the neuron’s dendritic tree. Equation (3) states that, if the segment is not in a plateau state already, a369

new plateau is initiated as soon as both synaptic and dendritic inputs exceed their respective thresholds θsyn
i and θden

i .370
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Implementation of the navigation experiments371

To simulate the stochastic movements of a rat, random paths are generated with time-varying location l(t) =372

(X(t), Y (t)) ∈ R2 as solutions of the following system of stochastic differential equations:373

dX = cos(2πA)V dt

dY = sin(2πA)V dt

dA = 0.25dWA

dV = 10.0(0.25− V )dt+ 0.1dWV

A represents the angular heading of the animal, V represents its velocity in m
s and WA,WV represent independent374

standard Brownian motion processes. Each path is generated with a randomized initial position within a rectangular375

domain of 10cm × 9.5cm , a random angular heading and a random velocity according to the marginal stationary376

distribution of V in the equation above, and is simulated for a fixed duration of 200ms. Three populations of place cells,377

each 20 neurons strong, are centered on a hexagonal grid with center-to-center distance of r ≈ 2.9cm. Each population378

randomly emits spike volleys following a homogeneous Poisson process with rate λ = 50Hz. The magnitude of each379

spike volley is determined by the population’s mean activity at the time, which depends on the animal’s location within380

the environment through a receptive field tuning curve. The tuning curves model the probability of each individual381

neuron within the population to participate in a given spike volley by the bell-curves fi(x) = exp(−x−µi

2σ2 ) with382

coefficient σ = 9.7mm, centered on the tiles of the hexagonal grid. The total number of spikes emitted during a383

volley from population i at time t is therefore a random variable distributed according to a Binomial distribution with384

population size n = 20 and probability p = fi(l(t)). Additionally, each neuron in the population emits random spikes385

at a rate of 5Hz to emulate background activity. Each spike is transmitted through stochastic synapses independently386

with probability 0.5.387

Each of the simulated neuron’s dendritic segments receives spiking input from the 20 neurons of one population and388

requires at least 5 coincident spikes to trigger a plateau potential. The three segments are connected in a chain that389

requires sequential activation by spike volleys from the input populations in correct order to fire a spike. A random390

path is considered to be accepted by the neuron, if the neuron responds with a spike at any point in time during the391

corresponding simulation run.392

To evaluate the rotation and location sensitivity of the neuron, we also generate straight paths with constant movement393

speed v = 3r
200ms ≈ 43cm/s that are either rotated around the center of the environment by an angle α or offset from394

the center by a distance ∆x orthogonal to the optimal movement direction. For each angle or offset, respectively, the395

empirical firing probability of the neuron in response to that path is estimated by simulating the path and the neuron’s396

responses 500 times each.397

Implementation of the evidence-integration experiments398

The input to the evidence-integrating neuron is generated by superimposing spike volleys onto 1000 independent399

Poisson processes with a constant firing rate of 10Hz. The volleys times are generated by a Poisson process with a400

time-varying rate λ(t) representing the incoming "evidence". Here, λ(t) = 200Hz · (1[0.25,0.5](t) + 2 · 1[0.75,1.0](t) +401

3 · 1[1.25,1.5](t)) + 20Hz. Each volley consists of simultaneous spikes from a randomly chosen set of ten input neurons402

with consecutive indices (wrapping around from 1000 to 1). Since each EPSP is assumed to last for a duration of 5ms,403

volleys and individual spikes are discarded if they occur less than 5ms after a preceding volley or spike. Each of the404

neuron’s 1000 dendritic segments receives synaptic input via stochastic synapses with transmission probability 0.5 from405

20 consecutive input neurons. As the number of input neurons and dendritic segments matches in this example, there406

is exactly one dendritic segment for every group of 20 consecutive input neurons, and each input neuron projects to407

exactly 20 dendritic segments. The total number of the neuron’s synapses in this example is therefore 20000. Over408

time, the number of simultaneously active dendritic compartments as well as the times of generated somatic spikes is409

recorded. As a reference, the convolution (λ ?Π)(t) of the time-varying rate-function λ with a rectangular filter Π of410

length 100ms and unit-integral is calculated.411

Implementation of the rate-based analysis412

For the rate-based analysis, four different neurons are constructed. First, a neuron consisting of a single dendritic413

compartment is driven by a total of 25 independent Poisson spike-trains with constant firing rate rA. As in all414
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other experiments, the duration of each spike is set to τsynapse = 5ms, the duration of a plateau potential is set to415

τdendrite = 100ms. By systematically varying rA and, for each choice, recording the number of plateau potentials416

generated during a simulation time-interval of 250s we can estimate the smooth function %(rA), which relates the firing417

rate of the input population A to the resulting rate at which plateau potentials are generated.418

For each of the three morphologies representing the C →1 B →1 A neuron, the (C + B) →2 A neuron and the419

(C +B)→1 A neuron, we systematically vary the input firing rates of both populations B and C independently while420

keeping the firing rate of population A fixed at a constant 25Hz. For each combination, we again record the number of421

somatic spikes generated over a time-interval of 250s. As a reference for these two-dimensional functions, we use an422

idealized "and" and "or" function defined as:423

fand(B,C) = τ2dendrite%(rC)%(rB) (4)
for(B,C) = τdendrite%(C) + τdendrite%(B)− fand(B,C) (5)

= 1− (1− τdendrite%(C))(1− τdendrite%(B)) (6)

At a firing rate rX , a segment driven by population X is in a plateau state at a given point in time with probability424

τdendrite%(rX), therefore the probability that a segment driven by population C is active at the time that an input from425

population B arrives, which could in turn activate the next segment, is τdendrite%(rC). The probability that this second426

segment is still active, when yet another volley from population A arrives to possibly trigger a somatic spike is also427

τdendrite%(rB). Therefore the neuron’s firing rate is proportional to τ2dendrite%(rC)%(rB). Similarly, the probability that428

two parallel upstream segments driven by populations C and B are simultaneously active at a given point in time is429

τ2dendrite%(rC)%(rB). In contrast, the probability that either upstream segment is active at a given point in time is just the430

probability that not both are simultaneously inactive, i.e. 1− (1− τdendrite%(C))(1− τdendrite%(B)). This expression has431

the nice alternative form c+ b− cb, where c = τdendrite%(C), b = τdendrite%(B) and cb = fand(B,C), which generalizes432

the Boolean "or" operation to real-valued firing rates. When identifying true with 1 and false with 0, the truth-table of433

this expressions matches that of the logic expression "c or b".434

To evaluate timing requirements for each of these three neuron morphologies, we run another simulation at constant input435

rates rA = rB = rC = 25Hz for a duration of 1h of simulated time. We record the time of each plateau-initiation-event436

in both upstream segments driven by population C and B for a time-interval of 200ms preceding each somatic spike. If437

there is exactly one plateau-event from each segment in such a time-interval, we record this as an unambiguous pair438

of plateau events. If there is more than one plateau-event on either of the dendritic segments, we record all pairs of439

plateau-events in that time-interval composed of one plateau event for each segment. We refer to these latter pairs as440

ambiguous. Using these ambiguous pairs, we estimate the joint probability distribution Pi(∆tB ,∆tC |tA) over relative441

times ∆tB and ∆tC between a plateau triggered by population B or C and a somatic spike triggered at time tA by442

population A. For a more reliable estimate of the timing constraints, we consider only the unambiguous pairs, which443

evidently fall into distinct domains of these joint probability distributions that uniquely characterize the precise timing444

requirements of the respective neuron morphologies. This can be seen in figure 5. E.g. for the C →1 B →1 A neuron,445

all plateaus triggered by population C must precede those triggered by B, but cannot precede them by more than one446

plateau duration of 100ms, therefore they fall into a parallelogram below the diagonal. For the (C +B)→2 A neuron,447

on the other hand, both plateau events must independently occur within 100ms before a somatic spike, and hence fall448

into the upper quadrant of the joint density.449

Code availability450

All simulations are implemented in a custom developed package in the Julia programming language [61], publicly451

available via the code repository hosted at https://github.com/jleugeri/ADSP.jl. Further documentation of the simulator452

and implementation details can be found there.453
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ABSTRACT
Spiking neurons consume energy for each spike they emit. Reduc-
ing the firing rate of each neuron — without sacrificing relevant
information content— is therefore a critical constraint for energy
efficient networks of spiking neurons in biology and neuromor-
phic hardware alike. The inherent complexity of biological neurons
provides a possible mechanism to realize a good trade-off between
these two conflicting objectives: multi-compartment neuron models
can become selective to highly specific input patterns, and thus
learn to produce informative yet sparse spiking codes. In this paper,
I motivate the operation of a simplistic hierarchical neuron model
by analogy to decision trees, show how they can be optimized using
a modified version of the greedy decision tree learning rule, and
analyze the results for a simple illustrative binary classification
problem.

CCS CONCEPTS
• Computing methodologies→ Neural networks.

KEYWORDS
spiking neural networks, multi-compartment models, decision tree,
random forest, information theory
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1 INTRODUCTION
Cortical neurons predominantly use spikes - brief nerve impulses of
identical magnitude and shape - to convey information. This mode
of communication has been largely ignored in machine learning
models of neural networks in favour of rate coding, where each
neuron produces a real valued quantity as its output - the neuron’s
instantaneous firing rate. In recent years however, driven in large
part by the development of neuromorphic hardware and advances in
training mechanisms[10], spiking neural networks (SNNs) have gar-
nered renewed interest, since their binary pulse-based communica-
tion lends itself particularly well to implementation in conventional
binary CMOS technology and promises to enable ultra-low-power
applications while side-stepping many of the issues associated with
purely analog or purely digital designs.

Since in SNNs the information exchange —as well as a substantial
amount of energy expense— occurs with spikes, a sparse code that
minimizes the total number of generated spikes can help to mini-
mize the energy consumption. However, to ensure that the relevant
information can still be transmitted even at very low spike-rates, it
is critical that each spikes conveys as much information as possible.
Since the magnitude of the spikes is assumed to be fixed, this leaves
two possible approaches: The precise timing of individual spikes
could be used to encode information (using a spike-timing code),
but this approach is limited in practise by timing jitters introduced
by thermal noise in analog implementations or by a limited system
clock-resolution or the often unpredictable delays due to package
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routing in digital implementations. The other approach is to ensure
that each spike represents a highly surprising event (i.e. carry high
information content) that is relevant for the task at hand. This ap-
pears to be nature’s way, where spike trains convey information
in a very effective way [12], so I’ll go down the second road and
discuss how simple multi-compartment models can pack a lot of
information into a single spike.

Consider for example a binary classification task, where a net-
work of spiking neurons should detect whenever its high-dimensional
input falls into one specific of two classes. In order to make efficient
use of each spike, it is not enough for the neuron to just encode
its high-dimensional inputs faithfully. Rather, each neuron has to
actively discard irrelevant information contained in its own input
stimulus while retaining only the information that is relevant for
producing the desired output. This challenge, also known as the
information bottleneck, applies to individual neurons just as much
as it does to layers of deep neural networks. Trivially, the best solu-
tion would be for the individual neuron to solve the classification
task entirely, and just label each target stimulus with a spike —
i.e. for the neuron to become a detector for the target class itself.
This is practically infeasible for most interesting problems, but it
illustrates the relationship between the computational power of the
individual neuron and the information content of its output: the
more computation can be performed within the neuron, the more
informative its outputs can become.

In most commonly used models of artificial neural networks, a
neuron’s output is a nonlinear transformation of an affine linear
operator applied to its inputs. Such neuron models are collectively
referred to as linear-nonlinear point-neuron models, and can ap-
proximate the somatic response of biological neurons reasonably
well. However they fail to account for many of the more recently
observed nonlinear effects due the location of a synaptic connec-
tion along the dendritic tree, which give rise to highly complex
interactions within the dendrite [6]. A mounting body of evidence
points to the conclusion, that rather than a single linear operator,
the dendritic arbor acts much more like a hierarchical structure
of non-linear functionally distinct compartments — not unlike a
tree-structured feed-forward neural network! While the experi-
mental characterization of nonlinear dendritic processing in vivo
is a fairly recent development, there is already empirical evidence
to demonstrate that dendritic computation is capable of realizing
boolean logic expressions beyond those that can be realized by
passive dendrites alone [4, 9]. From this perspective, the atomic
unit of computation is not a neuron, but rather a dendritic com-
partment, and the individual neuron itself is already a complex
system designed to extract relevant information from its inputs.
This perspective becomes even more intriguing when the temporal
(recurrent) dynamics of dendritic processing and regulatory path-
ways are considered, as well, but for the sake of simplicity I will
not discuss questions of timing in this paper.

In the following, I argue that simple multi-compartment mod-
els can provide a good trade-off between model complexity and
information content of their outputs. To motivate this idea, I relate
spiking multi-compartment neuron models to other established
concepts from machine learning, namely decision trees and ran-
dom forests, and show experimentally as well as analytically that
such multi-compartment neurons can indeed help to increase the

information content transmitted per spike, and thus reduce the
required total number of spikes to be transmitted.

2 METHODS
To better understand how an individual multi-compartmental neu-
ron can process information beyond what is possible in a linear-
nonlinear model neuron, let’s define a simplified mathematical
model of spiking neurons with compartmentalized dendritic trees.
In order to compare the computation realized by nonlinear dendritic
processing to machine learning models such as decision trees, I
make a couple of drastic simplifications: First, a neuron is composed
of a tree-hierarchy of segments. A segment of the dendritic tree
can have several local synaptic inputs and may recursively branch
into several further subordinate child segments. Each segment can
only be in either of two states, active or inactive, and the neuron
fires a spike when its root segment becomes active. In order to
become active, a segment must be activated sufficiently strongly
through its synaptic inputs, which is modeled by an affine-linear
combination of several input signals followed by a tresholding step-
function. In addition, if the segment has any child segments, at least
one of them has to be active as well. To simplify the discussion
immensely, I treat time as progressing in discrete time-steps, such
that each segment receives, within one time-step, a vector-valued
input signal as well as its input from the upstream child segments
and can either turn on or off in response. This model is a drastic
simplification of a model derived from biological characteristics of
cortical neurons, and ignores critical aspects timing, but it provides
a good intuition for how multi-compartment structures can help to
extract meaningful information and efficiently encode it in spikes.
A much more in-depth discussion and motivation of the full model
can be found in [8]. See figure 1 for a schematic representation of
the model.

2.1 Neurons and decision trees
So what does it take to make a neuron model as described above
spike? In order for the root segment to emit a spike, its local inputs
need to be "satisfactory", as well as the input received from upstream
child segments. Those segments in turn need to be activated, which
recursively depends on their local synaptic inputs and children, and
so on. As figure 1 a.) shows, there are several paths from a dendritic
"leaf segment" to the somatic "root segment", and each of these
paths represents one set of constraints that, when simultaneously
satisfied by the input signal, will lead to a spike. Since each segment
involved in such a path requires the previous child segment to
be active, the constraints are evaluated by the neuron in a "lazy"
fashion, starting from the leaf node continuing towards the soma
until one of the constraints is violated, or a spike is fired. This
perspective shows a very clear parallel to another well established
tool from machine learning: In decision trees, starting from the root
node, one constraint on the input signal is evaluated, and, depending
on whether it is satisfied or not, the next node is chosen, where
another constraint is evaluated, and so on[2]. If an "accepting" leaf
node is reached, the input sample is accepted as belonging to the
target class, otherwise it is rejected. See figure 1 b.). This similarly
leads to a number of possible paths, this time originating at the root
node and ending at "accepting" leaf nodes, each of which encodes
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Figure 1: Comparison of different model types. a.) A multi-
compartment neuron with two branches composed of three
segments each. To fire, either of the two branches has to
be fully activated. Each segment evaluates one linear clas-
sifier represented by the corresponding dotted line in the
top-right panel. b.) and c.) A equivalent decision tree and
feed-forward network that each select the same domain in
the two-dimensional input space as in a.).

a different sets of constraints that, when simultaneously satisfied,
would lead the tree to accept the input. Although the tree structure
is inverted, the general concept of hierarchical neuron models and
decision trees is therefore fully compatible.

Both of these approaches can represent arbitrary boolean func-
tions of binary feature detectors (implemented by dendritic seg-
ments or decision nodes, respectively), since each path represents
a conjunction of such features and the neuron or decision tree
responds to a disjunction of multiple such paths, effectively rep-
resenting any boolean expression of the features in its disjunctive
normal form. One major difference between both representations
is, that the result of a decision at a node of a decision tree merely
influences to which of two nodes to evaluate next. Both possible
answers are therefore equally informative, and only nodes along a
single path are ever evaluated. In the neuron model, on the other
hand, segments along all paths are activated simultaneously, but
the propagation of dendritic action potentials along each path from
a leaf to the root branch ends as soon as a single condition is not sat-
isfied. While the decision tree algorithm uses the outcome of each
decision most effectively, the neuron model reflects the un-clocked

operation of a biological neuron, which receives its various inputs
in parallel and no particular order. This latter approach thus fully
utilizes the parallelism of its structure and therefore seems better
suited for the design of custom hardware for parallel computing.

Using a sufficiently complex structure, both decision trees and
multi-compartment neurons can therefore be configured to respond
to very specific input patterns. Consider for example to top-left
panel of figure 1, where an artificial two-dimensional input signal
is to be classified into two classes, orange and blue. By carefully
arranging 7 (or 8 for the decision tree) linear decision boundaries,
both models can become selective to the conjunction of the two
quadrilateral sets circumscribed by the decision boundaries, and
could thus implement a decent solution for the classification prob-
lem! Figure 1 a.) and b.) show the corresponding model structures.

2.2 Growing neurons like trees
This perspective is very helpful, since a lot of the theoretical con-
siderations underlying decision trees can be transferred to multi-
compartment models of spiking neurons! Among them, the key in-
sight behind the training algorithm for decision trees, and main rea-
son for their success: the sequential greedy optimization algorithm[2].
To train a decision tree, the decision boundaries implemented by
each node are optimized such that the result of the decision leads
to the best possible expected reduction in uncertainty about the
true class label for exactly those input samples that successfully
propagate all the way up to the node. Each node thus refines the
classification made by its ancestors. This concept, the greedy maxi-
mization of the so-called information gain along each path, can be
directly transferred to multi-compartment neuron models as well,
and for a supervised binary classification task leads to the following
learning rule:

Starting from terminal segments, a neuron’s segments
optimize their local synaptic input weights to a) en-
sure themaximum expected information content about
the provided target labels for accepted and rejected
inputs, and b.) ensure that the conditional probabil-
ity of accepted inputs to belong to the target class is
higher than that of rejected inputs.

Part a.) of this rule corresponds to the standard training algo-
rithm for decision trees, and part b.) is a slight modification made
necessary by the fact that in the multi-compartment neuron model,
only the accepted inputs are propagated further to the unique parent
branch, whereas in decision trees, each input propagates further to
either of two child branches, depending on the classification result.
Mathematically, this rule can be expressed as follows:
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(wi ,bi ) = argmaxw ,b

∑
c

∑
s
pS ,C (s, c) log

(
pC |S (c |s)

)
where:

(1)

pS |C (s |c) =
1

|Dc
i |

∑
(x ,l )∈Dc

i

f (wx − b) (2)

pC (c) =
|Dc

i |∑
γ |D

γ
i |

(3)

PS ,C (s, c) = pS |C (s |c)pC(c) (4)

pC |S (c |s) =
pS ,C (s, c)∑
γ pS ,C (s,γ )

(5)

f (x) =

{
1 if x ≥ 0
0 otherwise

(during inference) or (6)

f (x) = (1 + exp(−αx))−1 (during training) (7)

Here Dc
i denotes the set of datapoints xk with corresponding

label lk = c that propagated all the way to segment i . The output of
the function f represents the predicted probability of a datapoint
to belong to the target class, and is therefore during inference cal-
culated by a hard decision threshold, but can for training purposes
be approximated instead by a differentiable function. For this relax-
ation, the information gain in equation 1 can be differentiated with
respect to the parameter vectorsw and b. The gradient information
is used in a simple gradient descent algorithm to optimize the model
coefficients in a greedy fashion for one dendritic segment at a time.
The formalism can be applied recursively to each segment, starting
from a terminal segment, and successively refines the subset of data
that is propagated further.

2.3 A training example
Let’s consider a simple example. The examples in this section are
implemented as software simulations in the Julia programming
language and are provided in a public code repository (see section
5). A single-compartment and a multi-compartment neuron each
receive two-dimensional input signals just like in the top-left panel
of figure 1 through their synaptic inputs. The single-compartment
model implements a simple linear classifier and responds to those
input signals that lie on the appropriate side of the decision bound-
ary, whereas the multi-compartment model as illustrated by figure 1
a.) receives the same input on each segment, and responds only
for those inputs that simultaneously satisfy several constraints im-
posed by the different segments. Training both models with the
aforementioned greedy training algorithm provides the solutions
that can be seen in the top row of figure 2. Impressively, the single
multi-compartmental neuron in fact learned to become selective
to the conjunction of either "eye" of the training data set. Results
are shown for an independently drawn test dataset from the same
distribution as the training dataset.

To verify that this is in fact a robust result, the bottom row of
figure 2 shows the averaged classification results of 100 randomly
initialized, structurally identical multi-compartment neurons, all
trained on the same data. The results clearly show that only the de-
sired regions within the two "eyes" of the dataset are selected for by

Figure 2: Comparison of trained single- and multi-
compartment neurons. Top row: Individual neurons
and their classification results are shown. Orange data
points lead the respective neuron to spike, blue datapoints
are rejected. Bottom row: ensembles of 100 randomly initial-
ized single- and multi-compartment neurons, respectively.
The color indicates the probability of a data-point to be
selected by a randomly drawn neuron from the ensemble.

neurons (albeit not all of the neurons necessarily become selective
to the conjunction of both — some instead only select for one of both
"eyes"). For comparison, a similar ensemble of single-compartment
models also preferentially selects for the correct region, however
a significant number of neurons always also responds to undesir-
able surrounding region, and different neurons converge to almost
identical solutions (this can be inferred from the few, pronounced
corners visible in the color-map).

2.4 Untrained feature extraction
While the example given above shows that (greedy) supervised
learning can be employed to turn multi-compartment neurons into
sophisticated pattern detectors, they can be useful even in the
absence of labeled training data. As figure 3 shows, randomly ini-
tialized single- and multi-compartment neurons are selective to
qualitatively different subsets of the input space: whereas single-
compartmentmodels respond to an entire half-space, multi-compartment
neurons instead tend to select bounded sub-volumes or cones of
the input space. As a consequence of this, the expected response
rate of multi-compartment models is much reduced, and any two
randomly initialized neurons are more likely to represent two inde-
pendent subsets of the input space, therefore complementing each
other better as independent random feature detectors.
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Figure 3: Comparison of untrained single- and multi-
compartment neurons. Randomly initialized neurons and
ensembles corresponding to those in figure 2 before train-
ing.

2.5 Quantifying the results
To quantify the statements made above, some statistics of the
classification results from both enesembles of single- and multi-
compartment neurons can be calculated. These results are sum-
marized in figure 4. While untrained single-compartment neurons
show a very broad distribution of high firing rates (firing any-
where from 0% to 100% of the data points), they converge to one
of a few possible solutions during training, which result in a few
narrow bands of relatively high firing rates. The corresponding
firing rates for untrained and trained multi-compartment models
show a drastic reduction in firing rates, demonstrating that, in-
deed, these neurons produce a much sparser code. This reduction
in firing rate, however, has no negative impact on the predictive
power of the resulting spikes; to the contrary, the outputs of the
multi-compartment neurons are, as expected, much more correlated
with the target labels than the outputs of the single-compartment
neurons. Of course, the untrained version of both models is barely
correlated by chance (correlation coefficiencts distributed around
0.0). To verify that the multi-compartment neurons are in fact more
diverse and independent, the right panel of figure 4 shows a com-
parison of the distribution of the mutual correlation coefficients
between the outputs produced by each pair of two neurons. For
untrained single-compartment neurons, this distribution is very
broad, whereas for a untrained multi-compartment neurons, it is
distributed according to a narrow peak close to 0.0, confirming
the expected uncorrelatedness. For trained neurons, the mutual
correlation is naturally increased (as all neurons are optimized to
produce the same target labels). For single-compartment neurons,
however, a striking peak at a correlation coefficient of 1.0 can be

Figure 4: Statistical properties of (un)trained single- and
multi-compartment neurons. Left panel: distributions of
the response probability of ensemble members for single-
andmulti-compartmentmodels (left and right, respectively)
before and after training (blue and orange, respectively).
Middle panel: distribution of correlation coefficients be-
tween ensemble members’ predictions and the target la-
bels of the test dataset. Right panel: distribution of correla-
tion coefficients between the predictions of pairs of neurons
from the ensembles.

observed, which indicates that a lot of neurons tend to approach
identical solutions. In an ensemble setting, this indicates that the
multi-compartment models represent the better "weak learners", as
their errors are more likely to be uncorrelated and can therefore be
reduced by averaging.

2.6 How deep is deep enough?
The discussion so far has left two serious questions unanswered:
firstly, how deeply nested should the multi-compartment neurons
ideally be? And secondly, how do such nested neurons learn in
biology? To the first one, there does not seem to be a satisfying
answer: just like in decision trees, the choice of depth ultimately
constitutes a meta-parameter that is highly task dependent: too
simple of a structure, and the neurons would converge to the same,
insufficient solution; too complex of a structure, and the neurons
become ineffective "grandmother neurons", that barely respond to
any input stimuli. Luckily, here some intuitions from decision trees
can help, where the effect of depth has been extensively studied. For
the running example in this paper, for example, the neuron model
has been chosen just barely complex enough to be in principle
capable of approximately solving the problem.

Answering the second question requires a more in-depth discus-
sion of biological learning mechanisms and goes beyond the scope
of this paper. I’d merely like to stress at this point, that the proposed
rule, while implausible as a direct mechanism, only makes use of
the locally available, feed-forward information and the supervised
training labels, which need to be supplied to all dendritic segments
of the neuron by some global signal, but does not require any form
of specific feed-back signals to each segment from the soma. A differ-
ent, yet qualitatively similar, biological mechanism could therefore
optimize biological neurons in a greedy fashion, as well, and thus
circumvent the conceptual problems (such as frequent propagation
failures[11]) surrounding rules based on back-propagating action
potentials.
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3 RELATEDWORK
Hierarchical neuron models have been described before in terms of
artificial neural networks, with the complex model resembling a
tree-structured feed-forward network of single-compartment neu-
rons. You may at this point wonder: How is this different from
the hierarchical models discussed here, and why is the decision
tree perspective helpful? There is a subtle, but I believe important,
difference between the neuron-as-a-network and the neuron-as-a-
decision-tree perspective: In the former, each compartment would
be realized by a simple spiking neuron, and the inputs into a seg-
ment from its synaptic inputs as well as directly connected child seg-
ments would be combined linearly. In that model, the neuron thus
corresponds to a regular feed-forward neural network, with each
segment corresponding to one neuron of the single-compartment
type. This view is appealing, since it merely requires extending our
models of neural networks by some additional layers to capture
the intrinsic complexity of neurons (and therefore changes little
from the perspective of neuromorphic hardware development). As
shown in figure 1 c.), such a feed-forward structure could equally
select a specific subset of the data and thus act as a sparse pattern
detector.

However, despite its appeal, there is a considerable downside
when compared to the neuron-as-a-decision-tree perspective: in the
former, each segment operates on the input from its child branches,
and therefore all information must be transmitted through several
levels of the hierarchy, whereas in the latter, each segment operates
directly in the input space and only propagates a binary decision
("accept"/"reject") to its parent branch. This also causes a conceptual
problem for the neuron-as-a-network perspective, since no simple
mechanism for adjusting the relative weights of entire dendritic
segments are known. The much simpler structure of the model
discussed here also facilitates the analysis, and allows for using a
greedy training algorithm in the first place.

Multi-compartment models have also been extensively discussed
in various other contexts from neuroscience to machine learning,
e.g. in [13] or in [5], which conceptualizes a dendritic arbor as a
deep neural network, or in [3], which uses a different motivation to
derive a similar conclusion regarding the computational capabilities
of nonlinear dendrites to implement boolean functions. Similarly,
decision trees and their relation to neural networks have been
discussed before[7]. What I believe to be new in this work is the
direct application of the decision tree inference and optimization
algorithms to a model of individual spiking multi-compartment
neurons as well as the discussion and analysis of the impact on
sparse coding, specifically in the context of neuromorphic hardware.

4 DISCUSSION
Multi-compartment models as presented here offer a trade-off be-
tween the complexity of neurons, which leads to an increased foot-
print of each neuron, and the amount of information content con-
veyed per spike, which can lead to a reduction of the required
number of spikes per second or the required number of neurons
and thus energy consumption. Since the energy and footprint ex-
pended on communication grows quadratically with the number of
neurons in the network, this trade-off seems favourable for larger

networks, specifically for spiking networks in neuromorphic hard-
ware, where sparse codes with low spike-rates can lead to drastic
energy savings. To illustrate the potential impact of such models,
I presented simulation experiments for the inference stage, while
using a modified decision tree training algorithm for optimizing the
example neurons. But two difficult challenges, how to train deep
hierarchies of such neurons (that are by themselves hierarchical)
and how to account for the timing of input signals, remain. Despite
these questions left unanswered, I believe that hierarchical neuron
models offer a promising enough prospect for computational neuro-
science as well as for the development of neuromorphic hardware
to warrant much more investigation in the future.

5 CODE AVAILABILITY
All simulations are done using the julia programming language[1].
The code for all simulations is publically available online as a soft-
ware package in the version control repository under the following
address: https://github.com/jleugeri/MultiComp.jl.
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BESCHREIBUNG

Neuromorpher Musterdetektor und neuromorphe Schaltkreisanordnung hiermit

5 Die vorliegende Erfindung betrifft einen neuromorphen Musterdetektor gemäß dem Patentanspruch 1 

sowie eine neuromorphe Schaltkreisanordnung gemäß dem Patentanspruch 13.

Zur Verarbeitung ihrer Informationen können analog erfasste Signale, welche z.B. sensorisch erfasste 

Informationen repräsentieren können, in digitale Signale gewandelt und dann verarbeitet werden. Die 

Erfassung der analogen Signale kann üblicherweise mittels elektrischer Spannung erfolgen, welche einen 

10 zeit- und wertkontinuierlichen Verlauf, d.h. eine durchgängigen Verlauf der elektrischen Spannung über 

der Zeit, aufweist. Ein derartiges elektrisches Analogsignal kann mittels eines Analog-Digital-Umsetzers 

in ein digitales Signal in Form eines zeit- und wertdiskreten Verlaufs gewandelt werden, um die Informa-

tion der digitalen Signalverarbeitung zugänglich zu machen. Ein derartiges digitales Signal kann auch als 

binäres Signal bezeichnet werden und zwei unterschiedliche Zustände in Form von unterschiedlich ho-

15 hen elektrischen Spannungspegeln aufweisen, so dass über die Länge bzw. Dauer des Signalverlaufs 

zwischen niedrigen und hohen Spannungspegeln unterschieden werden kann. Die niedrigen Spannungs-

pegel können als „low“-Zustände und die hohen Spannungspegel als „high“-Zustände bezeichnet wer-

den. Hierdurch können die Zustände „0“ und „1“ dargestellt werden.

Die digitale Signalverarbeitung mittels entsprechender elektronischer Bauelemente wie z.B. digitale 

20 Signalprozessoren und Mikroprozessoren bietet dabei Vorteile und Möglichkeiten, welche mit analog 

arbeitender Elektronik gar nicht oder lediglich mit hohem Aufwand umsetzbar wären. Dabei werden die 

digitalen Signale üblicherweise nicht als die binären Signale eines Verlaufs von Nullen und Einsen in 

Form von niedrigen und hohen Spannungszuständen verarbeitet sondern als Werte etc. z.B. in Folgen 

von acht Bits, auch Byte genannt, dargestellt, gespeichert und durch Software verarbeitet. Die entspre-

25 chenden Algorithmen, welche die Verarbeitung der digitalen Signale durchführen, werden hierzu als 

Programmcode einer geeigneten Programmiersprache umgesetzt und z.B. auf einem Mikroprozessor 

oder auf einer CPU (Central Processing Unit) als serielle Abfolge der Programmierschritte ausgeführt. 

Mit anderen Worten werden in der digitalen Signalverarbeitung üblicherweise die Instruktionen numeri-

scher Algorithmen von Prozessorarchitekturen auf Binärzahlen implementieren, was die sequentielle 

30 Abarbeitung in arithmetisch-logischen Einheiten (ALU) und die Verwendung einer Speichereinheit be-

dingt.
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2

Zur Verarbeitung digitaler sowie analoger Informationen in Form digitaler Signale können auch sog. 

künstliche neuronale Netze bzw. Netzwerke verwendet werden, bei denen mittels künstlicher Neuronen 

die Funktionsweisen biologischer Neuronen bzw. biologischer neuronaler Netze bzw. Netzwerke nach-

gebildet werden. Die einzelnen künstlichen Neuronen arbeiten dabei zeitlich parallel zueinander, ver-

5 gleichbar der Vorbilder der biologischen Neuronen. Da eine derartige Arbeitsweise mit den sequentiell 

arbeitenden Prozessoren strukturbedingt jedoch nicht möglich ist, kann die parallele Arbeitsweise der 

künstlichen Neuronen auch bei Verwendung mehrerer paralleler Prozessoren bzw. Prozessorkerne nur 

unzureichend implementiert werden. Dies erschwert die tatsächliche Implementierung parallel arbei-

tender Verfahren zur digitalen Signalverarbeitung mit künstlichen neuronalen Netzen.

10 Zur Implementierung von künstlichen neuronalen Netzen bzw. Netzwerken werden daher auch neuro-

morphe Schaltkreise verwendet, welche jeweils ein biologisches Neuron als elektronische Schaltung 

abbilden und durch ihr Zusammenwirken das künstliche neuronale Netz bzw. Netzwerk ergeben. Die 

einzelnen neuromorphen Schaltkreise können dabei tatsächlich parallel zueinander arbeiten und hier-

durch die Signalverarbeitung beschleunigen bzw. die als Vorbild dienenden biologischen Neuronen bes-

15 ser nachbilden.

Typischerweise wird das Verhalten des einzelnen künstlichen Neurons dynamischen Systemen aus den 

theoretischen Neurowissenschaften wie z.B. dem Leaky-Integrate-and-Fire-Modell nachempfunden, 

durch digitale Arithmetik approximiert und der Datenaustausch zwischen den künstlichen Neuronen 

durch die Übertragung von Paketen realisiert. Dies erfordert jedoch den Einsatz vieler Recheneinheiten 

20 bzw. vieler arithmetisch-logischer Einheiten und stellt hohe Anforderungen an das Paket-Routing zwi-

schen den einzelnen Recheneinheiten. Im speziellen Bereich der Spiking-Neuromorphic-Hardware wird 

dabei pro künstlichen Neuron und pro Zeitschritt lediglich ein binäres Signal erzeugt.

In einem parallel signalverarbeitenden neuromorphen Netz bzw. Netzwerk der Digitaltechnik sollten 

somit folgende technische Probleme gelöst bzw. folgende technische Eigenschaften realisiert werden:

25  Künstliche Neurone sollte Eingangssignale von vielen anderen künstlichen Neuronen integrieren 

können. Dies erfordert einen Mechanismus, um Eingangssignale aufzuaddieren und mit einem 

kritischen Grenzwert vergleichen zu können. In bestehenden Ansätzen der digitalen Signalverar-

beitung wird dies mittels ALUs durch Ganzzahlarithmetik realisiert.

 Das Einsatzgebiet von digitaler Signalverarbeitung ist häufig durch das Erfordernis der Echtzeit-

30 fähigkeit ausgezeichnet, d.h. durch die Fähigkeit des Betriebssystems der Recheneinheit bzw. 

der Recheneinheiten, digitale Signale innerhalb einer vorbestimmbaren Frist sicher verarbeiten 

zu können. Die Einhaltung einer Reaktion auf das digitale Signal innerhalb dieser Frist muss in 

diesem Fall sichergestellt sein.
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3

So sind die Zeitskalen, auf welche ein analoges Signal in der Außenwelt relevante und zu verar-

beitende Charakteristika aufweist, nicht fest und zum Teil auf schnellen oder langsamen Skalen 

variiert. Daher müssen die Zeitskalen der Verarbeitung digitaler Signal im integrierten Schalt-

kreis von denen in der Außenwelt entkoppelt werden. Klassische Ansätze der digitalen Signalver-

5 arbeitung in z.B. Mikrokontrollern umgehen dieses Problem, indem Zwischenergebnisse im dedi-

zierten Arbeitsspeicher abgelegt werden.

In neuromorphen Ansätzen wird Information meist stattdessen lokal im Zustand der einzelnen 

Neuronen gehalten. Ggfs. kann die Rate, mit der sich der Zustand des Neurons pro Zeitschritt 

ändert, skaliert und auf die relevante Zeitskala des Eingangssignals abgestimmt werden. Die Ver-

10 arbeitung langsamer Signale mit einem schnellen Takt erfordert daher einen hoch aufgelösten 

internen Zustand der Neuronen.

 Um komplexere Funktionalitäten wie das Erkennen von Mustern mittels neuromorpher Schalt-

kreise abzubilden, müssen viele Neuronen sinnvoll miteinander verschaltet werden. Dies wird 

gegenwärtig durch verschiedene Mesh- und Crossbar-Routing-Systeme implementiert, welche 

15 bestimmte Konfigurationen zulassen und Output-Signale dem Input verschiedener Neuronen zu-

ordnen. Die Verbindungen zwischen einzelnen Neuronen sind dabei meist unterschiedlich ge-

wichtet, was einen entsprechenden Mechanismus zur verbindungsspezifischen Konfiguration 

und Signalübertragung erfordert.

 Um mit verrauschten Eingangssignalen umgehen zu können, sollte als Ausgangssignal nicht nur 

20 das gewünschte Signal, z.B. ob ein gegebenes Muster erkannt wurde oder nicht, sondern auch 

ein Maß der zugehörigen Unsicherheit generiert werden. Dies kann von bestehenden Ansätzen 

lediglich mittelbar unter Rückgriff auf bestimmte Netzwerkarchitekturen realisiert werden, ist 

aber nicht in der Hardware selbst angelegt.

Somit weisen die bestehenden Ansätze spike-basierter neuromorpher Hardware, welche auf gepulsten 

25 neuronalen Netzen (Englisch: spiking neural networks - SNN) beruhen, verschiedene Nachteile auf. So 

erfordert die Verwendung von Ganzzahlarithmetik und Paket-Routing den Einsatz von Mikroprozesso-

ren, was die technische Komplexität der Hardware erhöhen und aufgrund ihrer sequentiellen Operation 

zu Latenzen führen kann. Auch kann die Beschränkung auf einfache generische Neuronenmodelle mit 

gewichteten Verbindungen, welche nicht für die Analyse von kontinuierlichen Signalströmen entwickelt 

30 wurden, zur Verwendung von notwendigerweise großen Netzwerken führen, deren interne Kommunika-

tion viel Platz-, Energie- und bzw. oder Zeitressourcen beanspruchen kann.

Eine Aufgabe der vorliegenden Erfindung ist es, einen neuromorphen Schaltkreis bereitzustellen, um die 

zuvor genannten technischen Probleme zu lösen bzw. die zuvor genannten technischen Eigenschaften 
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4

zu realisieren. Insbesondere soll ein zu erkennendes Muster in einem binären Eingangssignal schneller 

und bzw. oder zuverlässiger als bisher bekannt erkannt werden können. Zumindest soll eine Alternative 

zu bekannten derartigen neuromorphen Schaltkreisen bereitgestellt werden.

Die Aufgabe wird erfindungsgemäß durch einen neuromorphen Musterdetektor mit den Merkmalen des 

5 Patentanspruchs 1 sowie durch eine neuromorphe Schaltkreisanordnung mit den Merkmalen des Paten-

tanspruchs 13 gelöst. Vorteilhafte Weiterbildungen sind in den Unteransprüchen beschrieben.

Somit betrifft die Erfindung einen neuromorphen Musterdetektor, welcher ausgebildet ist, wenigstens 

zwei 1-Bit Eingangssignale eines zu erkennenden Musters zu erhalten, mit wenigstens zwei Vergleichs-

schaltungen, welche jeweils ausgebildet sind, eines der 1-Bit Eingangssignale zu erhalten, die Anzahl der 

10 „high“-Zustände oder der „low“-Zustände des jeweiligen 1-Bit Eingangssignals innerhalb eines vorbe-

stimmten Zeitraums zu zählen, die Anzahl der gezählten Zustände mit einem vorbestimmten Schwell-

wert der jeweiligen Vergleichsschaltung zu vergleichen und bei Überschreiten des Schwellwerts auf die 

erfolgte bzw. auf die erfolgreiche Erkennung des zu erkennenden Musters hinzuweisen. Der neuromor-

phe Musterdetektor ist vorzugsweise mittels Digitaltechnik umgesetzt.

15 Mit anderen Worten werden wenigstens zwei 1-Bit Datenströme, welche gemeinsam ein zu erkennen-

des Muster in Form einer parallelen Bitfolge enthalten, dem erfindungsgemäßen neuromorphen Mus-

terdetektor in Form einer neuromorphen Schaltung zugeführt. Über eine vorbestimmte Anzahl von Bit, 

welche dem vorbestimmten Zeitraum entsprechen, werden nun die „high“-Zustände oder die „low“-Zu-

stände, d.h. die hohen Signalpegel oder die niedrigen Signalpegel, gezählt. Diese Anzahl wird fortlaufend 

20 mit einem Schwellwert verglichen. Wird dieser Schwellwert überschritten, so wird hieraus geschlussfol-

gert, dass zu erkennende Muster in dem jeweiligen 1-Bit Datenstrom der jeweiligen Vergleichsschaltung 

erkannt zu haben. Dies wird von dem neuromorphen Musterdetektor nach außen angezeigt, z.B. über 

ein entsprechendes Ausgangssignal.

Auf diese Art und Weise kann erfindungsgemäß vergleichsweise einfach mittels einer neuromorphen 

25 Schaltung eine Mustererkennung in einem digitalen Signal erfolgen.

Gemäß einem Aspekt der Erfindung ist die eine Vergleichsschaltung der anderen Vergleichsschaltung 

erstrangig untergeordnet, wobei die übergeordnete Vergleichsschaltung ausgebildet ist, nur dann auf 

die erfolgte Erkennung des zu erkennenden Musters hinzuweisen, falls der Schwellwert der übergeord-

neten Vergleichsschaltung überschritten und zeitgleich von der erstrangig untergeordneten Vergleichs-

30 schaltung auf die erfolgte Erkennung des zu erkennenden Musters hingewiesen wird.
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5

Dies kann es ermöglichen, die Entscheidung der übergeordneten Vergleichsschaltung von der Entschei-

dung der untergeordneten Vergleichsschaltung, das vorbestimmte Muster erkannt zu haben oder nicht, 

abhängig zu machen.

Gemäß einem weiteren Aspekt der Erfindung weist der neuromorphe Musterdetektor wenigstens eine 

5 weitere Vergleichsschaltung auf, welche parallel zu der untergeordneten Vergleichsschaltung angeord-

net ist, wobei die übergeordnete Vergleichsschaltung ausgebildet ist, nur dann auf die erfolgte Erken-

nung des zu erkennenden Musters hinzuweisen, falls der Schwellwert der übergeordneten Vergleichs-

schaltung überschritten und zeitgleich von den erstrangig untergeordneten Vergleichsschaltungen je-

weils auf die erfolgte Erkennung des zu erkennenden Musters hingewiesen wird.

10 Dies kann es ermöglichen, die Entscheidung der übergeordneten Vergleichsschaltung von der Entschei-

dung der beiden untergeordneten Vergleichsschaltungen, das vorbestimmte Muster erkannt zu haben 

oder nicht, abhängig zu machen.

Gemäß einem weiteren Aspekt der Erfindung weist der neuromorphe Musterdetektor wenigstens eine 

weitere Vergleichsschaltung auf, welche zweitrangig untergeordnet zu der erstrangig untergeordneten 

15 Vergleichsschaltung angeordnet ist, wobei die erstrangig untergeordnete Vergleichsschaltung ausgebil-

det ist, nur dann auf die erfolgte Erkennung des zu erkennenden Musters hinzuweisen, falls der Schwell-

wert der erstrangig untergeordneten Vergleichsschaltung überschritten und zeitgleich von der zweitran-

gig untergeordneten Vergleichsschaltung auf die erfolgte Erkennung des zu erkennenden Musters hinge-

wiesen wird.

20 Dies kann es ermöglichen, die Entscheidung der erstrangig untergeordneten Vergleichsschaltung von 

der Entscheidung der zweitrangig untergeordneten Vergleichsschaltung, das vorbestimmte Muster er-

kannt zu haben oder nicht, abhängig zu machen.

Dabei können die zuvor beschriebenen Möglichkeiten der Anordnung von mehr als zwei Vergleichsschal-

tungen auch miteinander kombiniert werden, indem wenigstens zwei erstrangige und wenigstens eine 

25 zweitrangige Vergleichsschaltung verwendet und wie zuvor beschrieben miteinander und bzw. oder 

seitens der übergeordneten Vergleichsschaltung in Abhängigkeit gesetzt werden.

Gemäß einem weiteren Aspekt der Erfindung bilden die wenigstens drei Vergleichsschaltungen einen 

Binärbaum mit wenigstens zwei Ebenen. Unter einem Binärbaum, auch binärer Baum genannt, wird eine 

besondere Unterart eines Baumes verstanden, wie er in der Informatik für hierarchische Datenstruktu-

30 ren verwendet wird. Der Ausgangspunkt, wie hier die übergeordnete Vergleichsschaltung, wird als Wur-

zel oder auch Binärbaumwurzel bezeichnet, von welcher sich der Binärbaum in verschiedenen Ebene 
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6

wie hier der erstrangigen und zweitrangigen Vergleichsschaltungen einzeln oder paarweise verzweigt, 

bis der jeweilige Ast an einem Binärbaumblatt endet.

Entsprechend können die Eigenschaften und Vorteile derartiger hierarchischer Datenstrukturen auf die 

erfindungsgemäße neuromorphe Schaltung übertragen und dort genutzt werden.

5 Gemäß einem weiteren Aspekt der Erfindung sind die Vergleichsschaltungen identisch ausgebildet. Dies 

kann die Umsetzung vereinfachen, da der Entwurf der neuromorphen Schaltung mit geringerem Auf-

wand ausfallen kann, in dem das Design der Vergleichsschaltung mehrfach verwendet wird. Auch kann 

dies die Vergrößerung der Schaltung des neuromorphen Musterdetektors vereinfachen und hierdurch 

eine Skallierbarkeit ermöglichen.

10 Gemäß einem weiteren Aspekt der Erfindung wird bei Überschreiten des Schwellwerts ein 1-Bit Aus-

gangssignal der jeweiligen Vergleichsschaltung auf den „high“-Zustand, ansonsten auf den „low“-Zu-

stand, gesetzt, oder umgekehrt. Dies kann es ermöglichen, dass Hinweisen der jeweiligen Vergleichs-

schaltung auf die erfolgte Erkennung des zu erkennenden Musters einfach umzusetzen.

Gemäß einem weiteren Aspekt der Erfindung sind die Vergleichsschaltungen ausgebildet, jeweils ein 1-

15 Bit Steuersignal zu erhalten und in Reaktion auf einen „high“-Zustand oder auf einen „low“-Zustand des 

jeweiligen 1-Bit Steuersignals das 1-Bit Ausgangssignal der jeweiligen Vergleichsschaltung auf den „low“-

Zustand zu setzen. Hierdurch kann eine Möglichkeit geschaffen werden, die entsprechende Vergleichs-

schaltung mittels des jeweiligen 1-Bit Steuersignals wieder zurückzusetzen. Mit anderen Worten kann 

die Vergleichsschaltung von außen resetted werden. Dies kann es insbesondere ermöglichen, alle Ver-

20 gleichsschaltungen zurückzusetzen, um anschließend mit dem Erkennen eines neuen Musters beginnen 

zu können, ohne dass der zuvor erfolgte Vorgang auf dessen Ergebnis Auswirkungen haben kann.

Gemäß einem weiteren Aspekt der Erfindung gibt der vorbestimmte Schwellwert der Anzahl der Zustän-

de der jeweiligen Vergleichsschaltung vor, wann das zu erkennende Muster als erkannt angesehen wird. 

Mit anderen Worten kann durch die Höhe des Schwellwerts in Relation zur Länge bzw. Kürze des vorbe-

25 stimmten Zeitraums bzw. der vorbestimmten Anzahl von Bit des Eingangssignals vorbestimmt werden, 

wie deutlich eine Übereinstimmung zwischen dem jeweiligen Eingangssignal und dem vorbestimmten 

Muster vorliegen muss, um das vorbestimmte Muster im jeweiligen Eingangssignal als erkannt anzuse-

hen. Dies kann für jedes zu erkennende Muster und für jede Vergleichsschaltung vorgegeben werden. 

Dies kann über die Konfiguration der Vergleichsschaltungen erfolgen.

30 Gemäß einem weiteren Aspekt der Erfindung weisen die Vergleichsschaltungen jeweils einen Schiebe-

fensterdetektor auf, welcher jeweils ausgebildet ist, das jeweilige 1-Bit Eingangssignal zu erhalten und 

die Anzahl der „high“-Zustände oder der „low“-Zustände des jeweiligen 1-Bit Eingangssignals innerhalb 
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7

des vorbestimmten Zeitraums zu zählen. Dies kann die Umsetzung dieser Funktion der Vergleichsschal-

tungen einfach und bzw. oder zuverlässig ermöglichen.

Gemäß einem weiteren Aspekt der Erfindung erfolgt das Zählen der Anzahl der „high“-Zustände oder 

der „low“-Zustände des jeweiligen 1-Bit Eingangssignals innerhalb des vorbestimmten Zeitraums mittels 

5 eines bidirektionalen Schieberegisters des jeweiligen Schiebefensterdetektors. Dies kann die Umsetzung 

dieser Funktion der Vergleichsschaltungen einfach und bzw. oder zuverlässig ermöglichen.

Gemäß einem weiteren Aspekt der Erfindung erhalten die Vergleichsschaltungen, vorzugsweise deren 

Schiebefensterdetektor, jeweils ein Taktsignal zur Steuerung der Verarbeitung der Pulse und ein Taktsi-

gnal zur Steuerung der Länge der Plateaus, wobei die beiden Taktsignale unterschiedlich sind. Unter 

10 einem Puls bzw. Spike ist der Zustand eines Signals im Zustand „high“ nach und vor einem Zustand „low“ 

zu verstehen. Unter einem Plateau eines Signals ist die Zeitdauer bzw. die Signallänge im Zustand „high“ 

zu verstehen. Mit anderen Worten ist unter eine Plateau eine Funktion vergleichbar einem volatilen 

Cache-Zwischenspeicher zu verstehen, welcher für eine konfigurierbare Zeit, d.h. die Zeitdauer des Pla-

teaus, ein Zwischenergebnis speichert. Auf diese Art und Weise kann die Mustererkennung der Ver-

15 gleichsschaltungen und damit auch des neuromorphen Musterdetektors in Abhängigkeit von wenigstens 

zwei unterschiedlichen Taktsignalen erfolgen.

Die vorliegende Erfindung betrifft auch eine neuromorphe Schaltkreisanordnung mit einer Mehrzahl von 

neuromorphen Musterdetektoren wie zuvor beschrieben, wobei jeder neuromorphe Musterdetektor 

ausgebildet ist, das gleiche 1-Bit Eingangssignal zu erhalten, ein unterschiedliches 1-Bit Zufallszahlensi-

20 gnal zu erhalten, das jeweilige 1-Bit Eingangssignal mit dem entsprechenden 1-Bit Zufallszahlensignal zu 

verändern, und die Anzahl der „high“-Zustände oder der „low“-Zustände des jeweiligen veränderten 1-

Bit Eingangssignals innerhalb eines vorbestimmten Zeitraums zu zählen.

Unter einem 1-Bit Zufallszahlensignal ist ein Signal mit einer Bitfolge zu verstehen, welche zufällig er-

zeugt wurde. Dies kann deterministisch oder nicht-deterministisch erfolgen. Ein deterministisch erzeug-

25 tes 1-Bit Zufallszahlensignal kann auch als Pseudo-Zufallszahlensignal bezeichnet werden. Dabei kann 

die Verwendung eines pseudo-zufälligen 1-Bit Zufallszahlensignals vorteilhaft sein, da dies einfacher als 

ein nicht-deterministisches 1-Bit Zufallszahlensignal erzeugt werden und zur Erzielung der entsprechen-

den Eigenschaften und Vorteile ausreichend sein kann.

Somit können mehrere der zuvor beschriebenen neuromorphen Musterdetektoren parallel zueinander 

30 angeordnet und verwendet werden, um jeweils das gleiche vorbestimmte Muster in dem gleichen Ein-

gangssignal zu erkennen. Hierbei können die beiden 1-Bit Datenströme jeweils unterschiedlich stochas-

tisch verändert werden, so dass das gleiche Muster jeweils in unterschiedlichen Eingangssignalen der 

einzelnen neuromorphen Musterdetektoren erkannt werden muss. Dies kann eine Aussage über die 
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Zuverlässigkeit der Mustererkennung erlauben, da die gleichen Eingangssignal mit dem zu erkennenden 

Muster durch die 1-Bit Zufallssignale unterschiedliche verfremdet bzw. gestört jeweils identisch durch 

die neuromorphen Musterdetektoren bearbeitet werden.

Diesbezüglich sei angemerkt, dass ein (pseudo-)zufälliges Maskieren eines Datenstroms in mehrere sich 

5 zufällig unterscheidende Datenströme auch unabhängig von einer neuromorphen Schaltkreisanordnung 

wie zuvor beschrieben und insbesondere unabhängig von einer Mehrzahl von neuromorpher Musterde-

tektoren wie zuvor beschrieben umgesetzt und angewendet werden kann. Dies kann es ermöglichen, 

die entsprechenden Eigenschaften und Vorteile auch unabhängig umzusetzen und anzuwenden.

Gemäß einem Aspekt der Erfindung weist wenigstens eine Vergleichsschaltung, vorzugsweise weisen 

10 alle Vergleichsschaltungen jeweils, ein Und-Gatter auf, welches ausgebildet ist, das jeweilige 1-Bit Ein-

gangssignal und das entsprechende 1-Bit Zufallszahlensignal zu kombinieren. Hierdurch kann die Verän-

derung der gleichen Eingangssignal durch die unterschiedlichen stochastischen 1-Bit Zufallszahlensignal 

umgesetzt werde.

Gemäß einem weiteren Aspekt der Erfindung ist die neuromorphe Schaltkreisanordnung ausgebildet, 

15 die Anzahl der 1-Bit Ausgangssignale der jeweiligen Vergleichsschaltung, welche zeitgleich im „high“-Zu-

stand oder im „low“-Zustand sind, zu erfassen und aus dem Verhältnis der Anzahl von 1-Bit Ausgangssi-

gnalen im „high“-Zustand oder im „low“-Zustand und der Anzahl der neuromorphen Musterdetektoren 

einen Grad der Übereinstimmung zwischen 1-Bit Eingangssignal und zu erkennendem Muster zu bestim-

men. Hierdurch kann diese Information bestimmt und zur Verfügung gestellt werden.

20 Gemäß einem weiteren Aspekt der Erfindung weist wenigstens eine Vergleichsschaltung, vorzugsweise 

weisen alle Vergleichsschaltungen jeweils, einen Zeitmultiplexer auf, welcher ausgebildet ist, parallele 

Ausgangssignale der neuromorphen Musterdetektoren zu einem 1-Bit-Ausgangssignalder neuromor-

phen Schaltkreisanordnung zusammenzuführen. Auf diese Art und Weise kann ein einziger resultieren-

den 1-Bit Datenstrom als Ausgangssignal der neuromorphen Schaltkreisanordnung erzeugt werden.

25 Ein Ausführungsbeispiel und weitere Vorteile der Erfindung werden nachstehend im Zusammenhang mit 

den folgenden Figuren rein schematisch dargestellt und näher erläutert. Darin zeigt:

Fig. 1 eine schematische Darstellung eines Symbols eines Schaltkreises einer Population der Fig. 2;

Fig. 2 eine schematische Darstellung eines Schaltkreises der Population der Fig. 1;

Fig. 3 eine schematische Darstellung eines Symbols eines Schaltkreises eines Neurons der Fig. 4;

30 Fig. 4 eine schematische Darstellung eines Schaltkreises des Neurons der Fig. 3;

Fig. 5 eine schematische Darstellung eines Schaltkreises eines Binärbaumzweigs;

Fig. 6 eine schematische Darstellung eines Schaltkreises eines Abschlusszweigs;
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9

Fig. 7 eine schematische Darstellung eines Symbols eines Schaltkreises eines Segments der Fig. 8;

Fig. 8 eine schematische Darstellung eines Schaltkreises des Segments der Fig. 7;

Fig. 9 eine schematische Darstellung eines Symbols eines Schaltkreises eines Schiebefensterdetek-

tors der Fig. 10;

5 Fig. 10 eine schematische Darstellung eines Schaltkreises des Schiebefensterdetektors der Fig. 9;

Fig. 11 eine schematische Darstellung eines Symbols eines Schaltkreises eines Zeitmultiplexers der Fig. 

12; und

Fig. 12 eine schematische Darstellung eines Schaltkreises des Zeitmultiplexers der Fig. 11.

Fig. 1 zeigt eine schematische Darstellung eines Symbols eines Schaltkreises einer Population 1 der Fig. 

10 2. Fig. 2 zeigt eine schematische Darstellung eines Schaltkreises der Population 1 der Fig. 1.

Unter einer Population 1 im Sinne von Computersoftware wird eine Anordnung von gleichen Computer-

programmen verstanden, welche gemeinsam die Population 1 bilden. Wird dies auf neuromorphe 

Schaltkreise übertragen, so kann die o.g. Population 1 mittels neuromorpher Schaltkreise als neuromor-

phe Schaltkreisanordnung 1 gebildet werden, indem mehrere neuromorphe Musterdetektoren 2, wel-

15 che auch als Neuronen 2 bezeichnet werden können, gleicher Struktur in Form von identisch ausgebilde-

ten neuromorphen Schaltkreisen miteinander zur Population 1 verschaltet werden, siehe Figur 2.

Die Population 1 besteht dabei gemäß dem dargestellten Ausführungsbeispiel aus einer Anzahl K von 

Neuronen 2, von welchen in der Figur 2 das erste, das zweite und das K-te Neuron 2 von links nach 

rechts dargestellt sind. Jedes Neuron 2 erhält denselben eingehenden Datenstrom E als Eingangssignal 

20 E, welches aus einer Anzahl N von einzelnen 1-Bit Eingangssignalen E1-EN besteht. Das Eingangssignal E 

enthält ein zu erkennendes Muster, welches auch als Pattern bezeichnet werden kann.

Jedes Neuron 2 erhält ferner parallel dasselbe Steuersignal I, welches aus einer Mehrzahl von einzelnen 

1-Bit Steuersignalen I1-IN besteht. Das Steuersignal I kann zum Zurücksetzen von Vergleichsschaltungen 

2, auch Segmente 3 genannt, innerhalb der Neuronen 2 verwendet werden, wie weiter unten näher 

25 beschrieben werden wird.

Ferner erhält jedes Neuron 2 eine Anzahl N von binären Zufallszahlensignalen M1,1-MK,N, welche deter-

ministisch erzeugt und für jedes Neuron 2 unterschiedlich pseudo-zufällig sind. Genauer gesagt wird der 

Population 1 für jedes der N Eingangssignale E1-EN und für jedes der K Neuronen 2 ein zufälliges 1-Bit 

Zufallssignal M1,1-MK,N zur Verfügung gestellt.

30 Des Weiteren erhält jedes Neuron 2 drei unterschiedliche Taktsignal CLKPLT, CLKSPIKE und CLKPROG. Das 

Taktsignal CLKPLT ist ein Taktsignal zur Steuerung der Länge der Plateaus der Vergleichsschaltungen 3, 

wie weiter unten noch näher erläutert werden wird. Das Taktsignal CLKSPIKE ist ein Taktsignal zur Steue-
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rung der Verarbeitung von Spikes, d.h. von Pulsen, der Vergleichsschaltungen 3, wie ebenfalls weiter un-

ten noch näher erläutert werden wird. Das Taktsignal CLKPROG ist ein Taktsignal eines Konfigurationssi-

gnals DPROG bzw. DPROGO, wie ebenfalls weiter unten noch näher erläutert werden wird.

Ein Konfigurationssignal DPROG der Population 1 wird als Eingangssignal dem ersten Neuron 2 zugeführt, 

5 dort zur Konfiguration des ersten Neurons 2 verwendet und als Konfigurationssignal DPROGO von dem 

ersten Neuron 2 an das zweite Neuron 2 ausgegeben. Das zweite Neuron 2 erhält somit das Konfigurati-

onssignal DPROG als Eingangssignal usw. Das Konfigurationssignal DPROGO als Ausgangssignal des letzten K-

ten Neurons 2 ist das Konfigurationsausgangssignal DPROGO der Population 1.

Jedes der K Neuronen 2 erzeugt ein binäres Ausgangssignal P1-PK, welche parallel einem Zeitmultiplexer 

10 5 als dessen Eingangssignale S1-SK zugeführt werden. Die Verarbeitung dieser Eingangssignale S1-SK zu 

einem Ausgangssignal O des Zeitmultiplexers 5, welches auch das Ausgangssignal O der gesamten Popu-

lation 1 darstellt, wird weiter unter beschrieben.

Fig. 3 zeigt eine schematische Darstellung eines Symbols eines Schaltkreises eines Neurons 2 der Fig. 4. 

Fig. 4 zeigt eine schematische Darstellung eines Schaltkreises des Neurons 2 der Fig. 3. Fig. 5 zeigt eine 

15 schematische Darstellung eines Schaltkreises eines Binärbaumzweigs 21, 22. Fig. 6 zeigt eine schemati-

sche Darstellung eines Schaltkreises eines Abschlusszweigs 20.

Jedes Neuron 2 besteht im Wesentlichen aus einem rekursiv eingebetteten, binären Baum, auch Binär-

baum genannt, mit einem ersten Binärbaumzweig 21, einem zweiten Binärbaumzweig 22 sowie dem 

zuvor bereits erwähnten Segments 3, siehe z.B. Fig. 4. Jeder der beiden Baumzweige 21, 22 kann in jeder 

20 Ebene des binären Baums entweder ein weiteres Neuron 2 mit zwei weiteren Binärbaumzweigen 21, 22 

und einem Segment 3, siehe Fig. 5, oder ein Abschlusszweig 20 mit lediglich einem Segment 3, siehe Fig. 

6, sein. Die beiden Binärbaumzweige 21, 22 können auch als innere Knoten des Binärbaums 21, 22 oder 

als Nested Branches 21, 22 bezeichnet werden. Der Abschlusszweig 20 kann auch als Binärbaumblatt 20 

oder als Terminal Branch 20 bezeichnet werden. Das Neuron 2 selbst kann daher auch als Binärbaum-

25 wurzel 2 bezeichnet werden. Mit anderen Worten wird jeder Binärbaumzweige 21, 22 entweder aus 

einem weiteren Neuron 2, welches seinerseits wieder zwei Binärbaumzweige 21, 22 aufweist, oder aus 

einem Abschlusszweig 20 gebildet.

Dabei besitzt das jeweilige Segment 3, welches die Wurzel des Binärbaums bildet, die gleiche Struktur 

wie die Binärbaumzweige 21, 22 der weiteren Ebenen des binären Baums mit dem Unterschied, dass 

30 das Segment 3 der Wurzel des Binärbaums statt dem Taktsignal CLKPLT das Taktsignal CLKSPIKE erhält. Die 

Binärbaumzweige 21, 22 erhalten das Taktsignal CLKPLT. Dies führt dazu, dass das Ausgangssignal P1-Pk 

des Neurons 2 als kurze Spikes mit dem Taktsignal CLKSPIKE  und nicht lange Plateaus mit dem Taktsignal 

CLKPLT aufweist.
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Das Konfigurationssignal DPROG des Neurons 2 wird jedem Binärbaumzweig 21, 22, jedem Abschlusszweig 

20 sowie jedem Segment 3 zugeführt.

Jedes Segment 3 jeder Ebene des binären Baums erhält eines der 1-Bit Eingangssignale E1-EN sowie das 

entsprechende 1-Bit Steuersignale I1-IN und das entsprechende Zufallszahlensignal M1,1-MK,N. Die Funkti-

5 on des Segments 3 wird weiter unten erklärt werden. Auch erhält jedes Segment 3 jeder Ebene des bi-

nären Baums die Taktsignale CLKPLT, CLKSPIKE und CLKPROG zu den zugehörigen Signalen.

Der Abschlusszweig 20 besteht lediglich aus einem Segment 3 mit zwei konstanten Eingangssignalen B1, 

B2, welche beide den Zustand „high“ aufweisen. Ferner erhält das Segment 3 ebenfalls eines der 1-Bit 

Eingangssignale E1-EN sowie das entsprechende 1-Bit Steuersignale I1-IN und das entsprechende Zufalls-

10 zahlensignal M1,1-MK,N.

Fig. 7 zeigt eine schematische Darstellung eines Symbols eines Schaltkreises eines Segments 3 der Fig. 8. 

Fig. 8 zeigt eine schematische Darstellung eines Schaltkreises des Segments 3 der Fig. 7.

Das Segment 3, welches wie zuvor beschrieben jeweils identisch in jedem Neuron 2 mehrfach auf ver-

schiedenen Ebenen des binären Baums verwendet wird, erhält stets die Ausgangssignale P der Binär-

15 baumzweige 21, 22 derselben Ebene als Eingangssignal B1, B2. Die beiden Eingangssignale B1, B2 sind 

parallel sowohl auf ein erstes Oder-Gatter 30 als auch auf ein erstes Und-Gatter 31 geschaltet. Die Aus-

gangssignale der beiden ersten Gatter 30, 31 können entweder ein konstantes “high”-Signal oder ein 

konstantes “low”-Signal sein, welche parallel einem 4-fach Multiplexer 32 zugeführt werden. Zusätzlich 

zu den beiden Ausgangssignalen der beiden ersten Gatter 30,31 werden ein konstantes „low“-Signal und 

20 ein konstantes „high“-Signal parallel dem 4-fach Multiplexer 32 zugeführt. Dabei wird das Ausgangssi-

gnal des 4-fach Multiplexers 32 von einem ersten 2-bit SIPO Schieberegister 33 (SIPO: serial-input-paral-

lel-output) gewählt und einem zweiten Und-Gatter 34 zugeführt.

Die zwei 1-Bit Eingangssignale E1-EN und M1,1-MK,N des jeweiligen Segments 3 werden von einem dritten 

Und-Gatter 35 verschaltet, dessen Ausgangssignal in einen Schiebefensterdetektor 4 als dessen Ein-

25 gangssignal DIN geschaltet wird, welcher auch als Slider 4 bezeichnet werden kann und weiter unten 

näher erläutert werden wird. Der Schiebefensterdetektor 4 wird durch den Datenstrom des Konfigurati-

onssignals DPROG mit dem zugehörigen Taktsignal CLKPROG konfiguriert. Das Ausgangssignal des Konfigura-

tionssignals DPROGO des Schiebefensterdetektors 4 ist wiederum das Eingangssignal des ersten 2-bit SIPO 

Schieberegisters 33, welches seinerseits durch die steigende Flanke des Taktsignals CLKPROG weiterge-

30 schoben wird. Das erste 2-bit SIPO Schieberegister 33 erzeugt dabei parallel zu der zuvor beschriebenen 

Auswahl des Ausgangssignals des 4-fach Multiplexers 32 das Ausgangssignal des Konfigurationssignals 

DPROGO des Segments 3.
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Der Schiebefensterdetektor 4 erzeugt parallel zu dem Konfigurationssignals DPROGO des Schiebefenster-

detektors 4 ferner ein Ausgangssignal DOUT, welches das zweite Eingangssignal des zweiten Und-Gatters 

34 ist, dessen Ausgangssignal einen 1-Bit Flipflop 36 zu jeder steigenden Flanke in den „high”-Zustand 

versetzt. Das Ausgangssignal des 1-Bit Flipflops 36 ist auch das Ausgangssignal P des jeweiligen Seg-

5 ments 3.

Zu jeder steigenden Flanke des Taktsignals CLKPLT wird ein zweites N-bit SIPO Schieberegister 37 um 

einen Schritt geschoben, wodurch das aktuelle Ausgangssignal des 1-Bit Flipflops 36 ausgelesen wird. 

Das letzte Bit des parallelen Ausgangssignals des zweites N-bit SIPO Schieberegisters 37 bildet ein Ein-

gangssignal eines zweiten Oder-Gatters 38. Das andere Eingangssignal des zweiten Oder-Gatters 38 ist 

10 das entsprechende 1-Bit Steuersignale I1-IN. Wenn eines der beiden Eingangssignale des zweiten Oder-

Gatters 38 den “high”-Zustand aufweist, ist auch das Ausgangssignal des zweiten Oder-Gatters 38 „high” 

und die steigende Flanke schaltet den Zustand des 1-Bit Flipflops 36 zurück sowie setzt hierdurch alle 

Bits des zweites N-bit SIPO Schieberegisters 37 auf „low“, d.h. in den „low“-Zustand.

Fig. 9 zeigt eine schematische Darstellung eines Symbols eines Schaltkreises eines Schiebefensterdetek-

15 tors 4 der Fig. 10. Fig. 10 zeigt eine schematische Darstellung eines Schaltkreises des Schiebefensterde-

tektors 4 der Fig. 9.

Der Schiebefensterdetektor 4 dient dazu zu erkennen, ob die Anzahl der „high”-Bits, d.h. der Bits im 

„high“-Zustand, in seinem Eingangssignal DIN innerhalb der letzten N-bits, d.h. innerhalb eines vorbe-

stimmten Zeitraums, welcher durch das Konfigurationssignal DPROG konfigurierbar ist, des 1-Bit Eingangs-

20 signals DIN einen konfigurierbaren Schwellwert übersteigt. Hierzu wird das 1-Bit Eingangssignal DIN des 

Schiebefensterdetektors 4 einem ersten Und-Gatter 40 als dessen erstes Eingangssignal zugeführt. 

Das Ausgangssignal des ersten Und-Gatters 40 wird als Eingangssignal in ein erstes N-bit SIPO Schiebere-

gister 41 geleitet, welches das serielle Eingangssignal parallelisiert und mit jeder steigenden Flanke im 

Taktsignal CLKIN einen Schritt weitergeschoben wird. Das N-te parallele Ausgangssignal des ersten N-bit 

25 SIPO Schieberegisters 41 ist das linksschiebende Eingangssignal SL in ein zweites bidirektionales M-bit 

SIPO-Schieberegister 42. Das Ausgangssignal des ersten Und-Gatters 40 selbst ist das rechtsschiebende 

Eingangssignal SR des zweiten bidirektionalen M-bit SIPO-Schieberegisters 42.

Zu jeder steigenden Flanke des Taktsignals CLKIN wird das zweite bidirektionale M-bit SIPO-Schieberegis-

ter 42 einen Schritt in die Richtung nach rechts geschoben, falls das rechtsschiebende Eingangssignal SR 

30 „high” und das linksschiebende Eingangssignal SL „low” ist. Wenn das rechtsschiebende Eingangssignal 

SR „low” und das linksschiebende Eingangssignal SL „high” ist, wird das zweite bidirektionale M-bit SIPO-

Schieberegister 42 hingegen in die Richtung nach links geschoben. Ansonsten bleibt das zweite bidirek-

tionale M-bit SIPO-Schieberegister 42 unverändert.
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Falls das zweite bidirektionale M-bit SIPO-Schieberegister 42 in die Richtung nach rechts geschoben 

wird, wird ein „high”-Bit von links eingefügt. Falls hingegen das zweite bidirektionale M-bit SIPO-Schie-

beregister 42 in die Richtung nach links geschoben wird, wird ein „low”-Bit von rechts eingefügt. Das 

letzte Bit des parallelen Ausgangssignals des zweiten bidirektionalen M-bit SIPO-Schieberegisters 42 

5 wird invertiert als zweites Eingangssignal des ersten Und-Gatters 40 genutzt.

Ein M+1fach Multiplexer 43 wird von K 1-Bit Eingangssignalen konfiguriert und generiert so entweder 

ein konstantes “high”-Ausgangssignal oder selektiert einen der M parallelen Ausgangssignale des zwei-

ten bidirektionalen M-bit SIPO-Schieberegisters 42. Das selektierte Signal ist das Ausgangssignal des 

M+1fach Multiplexers 43 und des gesamten Schiebefensterdetektors 4.

10 Welches der M+1 <= 2^K (M plus 1 kleinergleich 2 hoch K) Eingangssignale mittels des M+1fach Multi-

plexers 43 ausgesucht wird, wird von dem parallelen Ausgangssignals eines dritten K-bit SIPO-Schiebere-

gisters 44 festgelegt, welches von einem Bitstrom des Eingangssignals DPROG mit einem dazugehörigen 

Taktsignals CLKPROG betrieben wird. Das letzte parallele Ausgangssignal des dritten K-bit SIPO-Schiebere-

gisters 44 ist der zusätzliche Konfigurationssignal DPROGO als Ausgangssignal des Schiebefensterdetektors 

15 4, um mehrere Segmente 3 bzw. Neuronen 2 in Serie verschalten zu können.

Fig. 11 zeigt eine schematische Darstellung eines Symbols eines Schaltkreises eines Zeitmultiplexers 5 

der Fig. 12. Fig. 12 zeigt eine schematische Darstellung eines Schaltkreises des Zeitmultiplexers 5 der Fig. 

11.

Der Zeitmultiplexer 5 ist in der Lage, eine Folge von K 1-Bit parallelen EIngangssignalen S1-SK in ein seriel-

20 les 1-Bit Ausgangssignal O zu enkodieren. Die steigende Flanke eines der K Eingangssignale S1-SK setzt 

ein korrespondierendes Flipflop 50 einer Anzahl K von identischen und parallel zueinander angeordne-

ten Flipflops 50 in den „high”-Zustand. Die Ausgangssignale der Flipflops 50 sind jeweils eines der beiden 

Eingangssignale eines jeweils korrespondierenden Und-Gatters 51 einer Anzahl K von identischen und 

parallel zueinander angeordneten Und-Gattern 51.

25 Zu jeder steigenden Flanke des Taktsignals CLKSPIKE wird ein selbst initialisierter K-bit Ringzähler 52 wei-

tergeschoben, dessen parallele Ausgangssignale jeweils das zweite Eingangssignal der Und-Gatter 51 

sowie das zurücksetzende Signal, d.h. das Reset-Signal, für die Flipflops 50 sind. Zu jedem Zeitpunkt ist 

genau ein Bit des Ringzählers 52 im Zustand „high” während alle anderen Bit des Ringzählers 52 im Zu-

stand „low” sind. Zur fallenden Flanke des Reset-Signals wird das jeweilige Flipflop 50 in den „low”-Zu-

30 stand geschaltet.

Während beide Eingangssignale eines der Und-Gatter 51 im Zustand „high” sind, ist auch das Ausgangs-

signal dieses Und-Gatters 51 im Zustand „hoch”, ansonsten im Zustand „low”. Wenn eines der K Und-
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Gatter 50 ein Ausgangssignal im Zustand „hoch“ hat, ist das Ausgangssignal eines Oder-Gatters 53 eben-

falls im Zustand „high”, sonst im Zustand „low”. Zur steigenden Flanke des Taktsignals CLKSPIKE wird das 

Ausgangssignal des Oder-Gatters 53 für einen Taktzyklus in einem D-Flipflop 54 zwischengespeichert. 

Das Ausgangssignal des D-Flipflops 54 ist das Ausgangssignal des Zeitmultiplexers 5.

5 Das Taktsignal CLKPROG ist an den Datenstrom des Konfigurationssignals DPROG zur Konfiguration der Seg-

mente 3 gekoppelt und hat lediglich die Funktion, die Segmente 3 innerhalb des jeweiligen Neurons 2 

sowie die Neuronen 2 innerhalb der Population 1 untereinander zu synchronisieren.

Das Taktsignal CLKSPIKE steuert die Verarbeitung von sog. „Spikes“, d.h. von Pulsen als „high“-Zustände. 

Zum einen wird mit der Frequenz des Taktsignales CLKSPIKE das Ausgangssignal der Population 1 in der 

10 Zeit multiplexed. Zum anderen wird das Taktsignal CLKSPIKE im zweiten bidirektionalen M-bit SIPO-Schie-

beregister 42 des Schiebefensterdetektors 4 genutzt, um dieses Eingangssignal synchronisiert zu verar-

beiten. Somit ist der ausgehende Datenstrom des zweiten bidirektionalen M-bit SIPO-Schieberegisters 

42 an das Taktsignal CLKSPIKE gebunden. Auch hängen alle eingehenden Datenströme des Eingangssignals 

E, des Kontrollsignals I sowie der binären Zufallszahlensignal M, welche zur Mustererkennung dienen, an 

15 dem Taktsignal CLKSPIKE.

In der Verarbeitung des Eingangssignals E, des Kontrollsignals I sowie der binären Zufallszahlensignal M 

zur Mustererkennung gilt insbesondere, dass das Zeitfenster des Schiebefensterdetektors 4 N * 1/f(CLK-

SPIKE) ist, also durch den Horizont des n bidirektionalen M-bit SIPO-Schieberegister 42 des Schiebefens-

terdetektors 4 und durch die Frequenz des Taktsignals gegeben ist. In der Anwendung lässt sich durch 

20 die Wahl der Frequenz die Population 1 auf die Zeitskalen anpassen, auf denen Teilmuster erkannt wer-

den sollen, wobei ein Teilmuster das ist, was ein Segment 3 alleine durch den Schiebefensterdetektor 4 

erkennt.

Das Taktsignal CLKPLT steuert ausschließlich die Länge der Plateaus in den einzelnen Segmente 3, also die 

Zeitdauer bzw. Signallänge, für die ein einzelnes Segment 3 sich die Erkennung eines Teilmusters zusam-

25 men mit ausreichendem Signal aus dem binären Baum merkt: Cache für das Zwischenergebnis. Im Spezi-

ellen wird das asynchron geschaltete „high“-Ausgangssignal des Segments 3 nach mindestens N * 

1/f(CLKPLT) und nach maximal (N+1) * 1/f(CLKPLT) wieder ausgeschaltet. Die Spanne ergibt sich dadurch, 

dass das Zählen im Schiebefensterregister 4 zum Ausschalten vom Anschalten des Ausgangssignals ent-

koppelt ist. Damit lässt sich über die Wahl von N die zeitliche Präzision auf Kosten von Bauteilen und 

30 über die gemeinsame Wahl von N und der Frequenz des Taktsignals CLKPLT die Zeitskala regeln, auf der 

Zwischenergebnisse und Teilmuster gespeichert werden. Das Taktsignal CLKPLT stellt somit eine zweite 

Zeitskala in der Mustererkennung dar.

223
T
hi
s
pu

bl
ic
at
io
n
is

in
cl
ud

ed
as

pu
bl
is
he

d.
Fo

r
ar
ch

iv
e
on

ly
.D

o
no

tr
ed

is
tr
ib
ut
e.



15

Die Kombination der Taktsignale CLKSPIKE und CLKPLT, um Teilmuster auf zwei unabhängig wählbaren 

Zeitskalen zur Mustererkennung zu kombinieren, stellt eine Besonderheit der Neuronen 2 dar. Isoliert 

kontrolliert jedes Taktsignal CLKSPIKE und CLKPLT wie bisher üblich einen Teil des Neurons 2 über Flanken-

steuerung. Genauer betrachtet werden jedoch erfindungsgemäß die Segmente 3 innerhalb des Neurons 

5 2 von den verschiedenen Taktsignalen CLKSPIKE und CLKPLT gesteuert und dies zur Implementierung von 

Algorithmen zur Mustererkennung verwendet.

Die zuvor beschriebene Population 1 kann dazu verwendet werden, mit niedriger Latenz Muster in kon-

tinuierlichen, digitalen Datenströmen (Bitstreams) zu erkennen. Da aufgrund von Störsignalen oder zeit-

licher Impräzision niemals dieselben Muster in gleicher Form auftreten, können dabei auch ungefähre 

10 Übereinstimmungen erkannt und der Grad der Übereinstimmung quantifiziert werden. Dabei sind die zu 

erkennenden Muster konfigurierbar, d.h. können vorbestimmt werden.

Hierzu werden die zuvor beschriebenen Neuronen 2 als mehrere Musterdetektoren in Gruppen in Form 

von Populationen 1 zusammengefasst. Jedes einzelne Neuron 2 ist hier eine hierarchische Struktur der 

Segmente 3, welche untereinander verknüpft sind und, je nach problemspezifischer Konfiguration, je-

15 weils eigene Eingangssignale verarbeiten. Wenn ein komplexes Muster als Eingangssignal alle Segmente 

3 in der richtigen zeitlichen Sequenz aktiviert, erzeugt das jeweilige Neuron 2 in seinem Ausgangssignal 

ein positives Bit, d.h. ein Ausgangssignal mit dem Zustand „high“; sozusagen „feuert“ das Neuron 2 bzw. 

das Neuron 2 erzeugt einen Pulse bzw. einen „Spike“.

Die Wahrscheinlichkeit, mit der ein einzelnes Neuron 2 feuert, reflektiert dabei den Grad der Überein-

20 stimmung zwischen dem geforderten, d.h. dem konfigurierten vorbestimmten, und dem gesehenen, 

d.h. der Population 1 zugeführten, Muster. In einer Population 1 lesen alle K gleichkonfigurierten Neuro-

nen 2 den gleichen Datenstrom als Eingangssignal E und versuchen, das gleiche Muster in dem Eingangs-

signal E zu erkennen, erhalten jedoch durch eine pseudo-zufällige Maskierung der Eingangssignale E mit 

den binären Zufallszahlensignalen M stochastisch voneinander verschiedene Eingangssignale E. Dies 

25 bedeutet, dass auf jedes Muster W von K Neuronen 2 reagieren, wobei W den Grad der Übereinstim-

mung zwischen dem zugeführten Muster und dem konfigurierten vorbestimmten Muster abbildet. Die 

technische Umsetzung kommt hierbei gänzlich ohne Mikroprozessoren aus und ist gänzlich in den zuvor 

beschriebenen Schaltkreisen umsetzbar.

Hierzu wird der eingehende Datenstrom E, in welchem ein Muster erkannt werden sollen, als getaktetes 

30 binäres Signal E in Form von N 1-Bit Eingangssignalen E1-EN auf mehreren parallelen Leitungen gelegt 

und der Population 1 zugeführt. Dies gilt ebenso für das Kontrollsignal I und die binären Zufallszahlensi-

gnale M.
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Innerhalb der Population 1 werden auf der Eingangsseite die gleichen Eingangssignale E und Kontrollsi-

gnale I an jedes Neuron 2 geleitet, wo die Eingangssignale E mit den neuronenspezifischen binären Zu-

fallssignalen M maskiert werden. Die einzelnen Ergebnisse der Neuronen 2 werden dann im Zeitmulti-

plexer 5 zusammengeführt, um einen einzelnen Datenstrom O als Ausgang der Population 1 zu generie-

5 ren, welcher wie gefordert die Qualität des erkannten Musters in den eingehenden Datenstrom E wider-

spiegelt.

Jedem einzelnen Neuron 2 innerhalb Population 1 kommt dabei die Aufgabe zu, das konfigurierbare, 

vorbestimmte Muster im jeweiligen 1-Bit Eingangssignal E1-EN der N 1-Bit Eingangssignale E1-EN zu er-

kennen. Hierzu sind die Neuronen 2 jeweils aus den einzelnen N Segmenten 3 aufgebaut, von denen 

10 jedes eines der eingehenden N 1-Bit Eingangssignale E1-EN verarbeitet. Jedes Segment 3 reagiert dabei 

auf ein relevantes Signal in seinem zugeordneten 1-Bit Eingangssignal E1-EN, d.h. das k-te Segment 3 auf 

ein relevantes Signal im 1-Bit Eingangssignal Ek, indem das Segment 3 für eine bestimmte Zeit einge-

schaltet, d.h. in den „high“-Zustand versetzt, wird. Untereinander sind diese Segmente 3 in dem binären 

Baum derart verschaltet, dass jedes einzelne Segment 3 nur dann durch das jeweilige 1-Bit Eingangssi-

15 gnal E1-EN eingeschaltet werden kann, wenn – je nach Konfiguration – Null, Eins oder Zwei der unterge-

ordneten Binärbaumzweige 21, 22 oder Abschlusszweige 20 im binären Baum bereits eingeschaltet sind. 

Wie lange ein Segment 3 eingeschaltet ist, wird durch das Taktsignal CLKPLT festgelegt, welches nicht an 

das Taktsignal CLKSPIKE des Eingangssignals E gekoppelt ist.

In jedem Neuron 2 ist diese Verschachtelung in dem Binärbaum abgebildet. Ein Neuron 2 hat für jedes 

20 Segment 3 ein jeweils zugeordnetes 1-Bit Eingangssignal E1-EN der N 1-Bit Eingangssignale E1-EN, mit 

welchem das jeweilige Segment 3 für eine feste Zeit eingeschaltet, d.h. in den Zustand „high“ gebracht, 

werden kann (Plateau). Jedes Segment 3 hat ebenso ein jeweils zugeordnetes 1-Bit Kontrollsignal I1-IN 

der N 1-Bit Kontrollsignale I1-IN, mit welchem das Segment 3, falls es bereits in den Zustand „high“ ist, 

durch das jeweils zugeordnete 1-Bit Kontrollsignal I1-IN als externes Signal wieder ausgeschaltet, d.h. in 

25 den „low“-Zustand gebracht, werden kann. Einzelne Segmente 3 bekommen das konfigurierbare Taktsi-

gnal CLKPLT, welches die zeitliche Dauer bestimmt, für die ein Segment 3 eingeschaltet ist. Das Segment 3 

an der Wurzel der Baumstruktur, d.h. in der obersten Ebene es binären Baums, generiert kurze Pulse, 

auch Spikes genannt, mit derselben Taktung des Taktsignals CLKSPIKE wie die Eingangssignale E anstatt 

längere Plateaus zu erzeugen, wie in den übrigen Segmenten 3.

30 Jedes der Segmente 3 wird zunächst durch die Eingangssignale B1, B2 anderer im binären Baum unter-

geordneter Segmente 3 getrieben, sofern diese existieren. Hier kann konfiguriert werden, ob Null, Eins 

oder Zwei Segmente 3 eingeschaltet sein müssen. Weiter wird der eingehende Datenstrom E in dem 

Schiebefensterdetektor 4 verarbeitet, welches für kurze Zeit eingeschaltet ist, falls die Anzahl der ge-

setzten Bits in einem festen Zeitfenster einen kritischen Pegel überschreitet. Das Eingangssignal in den 
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Schiebefensterdetektor 4 wird vorher mit dem binäres Zufallszahlensignal M maskiert. So ist die Ant-

wort jedes Schiebefensterdetektors 4 auf dasselbe Eingangssignal E stochastisch und unterscheidet sich, 

wie oben beschrieben, von anderen Schiebefensterdetektoren 4 in der Population 1, welche auf das 

gleiche Eingangssignal E abweichend reagieren. 

5 Falls sowohl das jeweils zugeordnete 1-Bit Eingangssignal E1-EN das konfigurierte Kriterium der unterge-

ordneten Binärbaumzweige 21, 22 bzw. Abschlusszweige 20 erfüllt und der Schiebefensterdetektor 4 

des Segments 3 im zugeordneten 1-Bit Eingangssignal E1-EN ein Signal erkannt hat, schaltet sich das Seg-

ment 3 ein. In dem zweiten bidirektionalen M-bit SIPO-Schieberegister 42 wird dieser Zustand für eine 

feste Anzahl an Takten des Taktsignals CLKPLT gehalten, worauf sich das Segment 3 selbst wieder aus-

10 schaltet. Weiter kann das jeweils zugeordnete 1-Bit Kontrollsignal I1-IN den zweiten bidirektionalen M-bit 

SIPO-Schieberegister 42 zurücksetzen und das Segment 3 frühzeitig ausschalten. Intern ist das Ausgangs-

signal des Segments 3 lediglich indirekt über den Schiebefensterdetektor 4 an ein Taktsignals CLKSPIKE 

gebunden. Das Segment 3 reagiert ansonsten mit einer zu vernachlässigen Verzögerung der einzelnen 

Bauteile.

15 Dem Schiebefensterdetektor 4 kommt dabei die Aufgabe zu, zu detektieren, falls die Anzahl der gesetz-

ten Bits, d.h. der Bits im „high“-Zustand, in einem festen vorbestimmten Zeitfenster des getakteten Da-

tenstroms einen kritischen Wert überschreitet. Hierzu wird seitens des Schiebefensterdetektors 4 pro 

Segment 3 die Anzahl der eingehenden Pulse, d.h. der Bits im Zustand „high“, in dem festen Zeitfenster 

in dem jeweiligen Datenstrom DIN gezählt. Jedes eingehende gesetzte Bit, d.h. Bit im Zustand „high“, 

20 schiebt das zweite bidirektionale M-bit SIPO-Schieberegister 42 vorwärts und wird gleichzeitig in einer 

durch das zweite bidirektionale M-bit SIPO-Schieberegister 42 und durch das Taktsignal CLKSPIKE des Da-

tenstrom E implementierten Delayline gespeichert. Nach diesem Delay wird das zweite bidirektionale 

M-bit SIPO-Schieberegister 42 wieder zurückgeschoben. 

Konfigurierbar ist, an welcher Stelle im zweiten bidirektionalen M-bit SIPO-Schieberegister 42 ein Bit 

25 gesetzt sein muss, um ein Ausgangssignal zu erzeugen. So signalisiert das zweite bidirektionale M-bit 

SIPO-Schieberegister 42, wann mehr als ein konfigurierbarer, vorbestimmter Schwellwert 1-Bit-Signale 

in dem durch das Taktsignal CLKSPIKE und durch die Länge der Delayline festgelegten Zeitfenster im Da-

tenstrom DIN zu finden waren.

Der Schiebefensterdetektor 4 dekodiert somit 1-Bit Signale, welche genau der Kodierung des Ausgangs-

30 signals der Population 1 entsprechen. Die Anzahl der Pulse in kurzer Zeit kodiert dabei die Stärke des 

Signals. Der Schwellwert im zweiten bidirektionalen M-bit SIPO-Schieberegister 42 legt fest, wann ein 

Signal stark genug war. 
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Das Konfigurationssignal DPROG, welches sich durch alle Bauteile der Population 1 zieht, ermöglicht die 

Konfiguration der Population 1 und aller enthaltener Bauteile.

Im Vergleich zu bekannten Lösungen zur digitalen Signalverarbeitung und Mustererkennung, besonders 

im Bereich neuromorpher Technologien, ergeben sich eine Reihe von Vorteilen aus den zuvor beschrie-

5 benen Neuronen 2 sowie der hieraus aufgebauten Population 1.

So ermöglicht der zuvor beschriebene Ansatz die Erkennung von konfigurierbaren Mustern auf verschie-

denen Zeitskalen und ist somit tolerant gegenüber Störungen im Signal oder im Timing. Dies erlaubt den 

Einsatz in erschwerten Bedingungen, z.B. im Verbund mit unpräziser Sensorik oder mit Signalen mit ho-

her Variabilität. 

10 Auch kann durch die Nutzung stochastischer Eingangssignale als die binären pseudo-zufälligen Zufalls-

zahlensignale M nicht nur ein gegebenes Muster erkannt werden, sondern es kann auch der Grad der 

Übereinstimmung quantifiziert werden.

Sowohl das Eingangssignal E als auch das Ausgangssignal O der Population 1 sind kompatibel, um mit 

weiteren Populationen zu kommunizieren, und erlauben somit die Verschaltung zu großen Netzen.

15 Die Informationsverarbeitung erfolgt gänzlich ohne den Einsatz von Mikroprozessoren oder Paket-Rou-

ting, was technisch einfacher umsetzbar ist, ein hohes Maß an Parallelisierung ermöglicht und zu niedri-

gen Latenzen führt.

Die Kommunikation zwischen Populationen 1 und das An- bzw. Ausschalten von Segmenten 3 ist an zwei 

verschiedene Taktsignale, nämlich die Taktsignale CLKPLT und CLKSPIKE, gebunden.  Hierdurch wird das 

20 Taktsignal CLKSPIKE, auf welchem Muster im Datenstrom E als Eingangssignal E erkannt werden sollen, 

von dem Taktsignal CLKPLT entkoppelt. Auf diese Art und Weise können im bestimmungsgemäßen Ge-

brauch im Datenstrom E Teilmuster erkannt werden, welche auf einer von dem Datenstrom E entkop-

pelten Zeitskala, nämlich dem Taktsignal CLKSPIKE, mit anderen Teilmustern des Datenstroms E verbun-

den werden. 

25 Zum Beispiel können viele Pulse im Datenstrom E in sehr kurzer Zeit übertragen werden und auf ein 

wichtiges Ereignis wie zum Beispiel das Überschreiten eines kritischen Wertes eines Temperatursensors 

hinweisen. Ein zweites Ereignis wie zum Beispiel das Überschreiten eines kritischen Wertes eines Be-

schleunigungssensors kann ebenfalls schnell mittels des Taktsignals CLKSPIKE übertragen werden. Beide 

Ereignisse können als Teil eines Muster „kritische Temperatur und dann kritische Beschleunigung“ dann 

30 aber auf einer Zeitskala, welche von dem Taktsignal CLKSPIKE entkoppelt und durch das Taktsignal CLKPLT 

zum Beispiel deutlich langsamer definiert ist, kombiniert werden. Durch die Kombination beider Taktsi-
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gnale CLKSPIKE, CLKPLT kann ein Segment 3 auf die speziellen externen Timing-Anforderrungen der Anwen-

dung angepasst werden.

Werden die Neuronen 2 mit einer höheren Komplexität in Form eines binären Baums mit zahlreichen 

Ebenen umgesetzt, so können mehr Informationen im internen Zustand der Neuronen 2 verarbeitet und 

5 gespeichert werden. Daher sind für dieselbe Leistung weniger individuelle Neuronen 2 erforderlich, was 

die Größe der resultierenden Population 1 und damit die Komplexität der notwendigen Kommunikati-

onsinfrastruktur deutlich reduzieren kann.

Weitere Ausgestaltungen der Erfindung, welche von dem betrachteten Ausführungsbeispiel abweichen, 

sind vorstellbar. Jedes einzelne der oben genannten Bauteile kann in seinem Funktionsumfang erweitert 

10 oder in der Umsetzung angepasst werden. Auch können mehrere Populationen 1 zu Netzen verschaltet 

werden, die eingesetzt werden könnten, um komplexere Probleme zu lösen.
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BEZUGSZEICHENLISTE (Teil der Beschreibung)

B1 Eingangssignal eines Segments 3 seitens eines ersten Binärbaumzweigs 21

B2 Eingangssignal eines Segments 3 seitens eines zweiten Binärbaumzweigs 22

CLKPLT Taktsignal zur Steuerung der Länge der Plateaus der Vergleichsschaltungen 3

5 CLKSPIKE Taktsignal zur Steuerung der Verarbeitung der Spikes der Vergleichsschaltungen 3

CLKPROG Taktsignal des Konfigurationssignals DPROG, DPROGO

DIN Eingangssignal eines Schiebefensterdetektors 4

DOUT Ausgangssignal eines Schiebefensterdetektors 4

DPROG Konfigurationssignal als Eingangssignal

10 DPROGO Konfigurationssignal als Ausgangssignal

E, E1-EN Eingangssignal der Population 1; eingehender Datenstrom

i Zählindex

I, I1-IN Kontrollsignal

J Anzahl der Eingangssignale des Abschlusszweigs 20

15 K Anzahl der Neuronen

M, M1,1-MK,N 1-Bit bzw. binäres Zufallszahlensignale

N Anzahl der Segmente

O Ausgangssignal des Zeitmultiplexers 5 bzw. der Population 1

P1-Pk 1-Bit Ausgangssignale der Neuronen 2, der Abschlusszweige 20, der Binärbaumzweige 

20 21, 22 und der Segmente 3 

S1-SK Eingangssignale des Zeitmultiplexers 5

SL linksschiebendes Eingangssignal des zweiten bidirektionalen (M-bit SIPO-) Schieberegis-

ters 42 des Schiebefensterdetektors 4

SR rechtsschiebendes Eingangssignal des zweiten bidirektionalen (M-bit SIPO-) Schiebere-

25 gisters 42 des Schiebefensterdetektors 4

W Grad der Übereinstimmung zwischen zugeführtem Muster und konfigurierten vorbe-

stimmten Muster

1 neuromorphe Schaltkreisanordnung; Population

30

2 neuromorpher Musterdetektor; Neuron; Neuronen-Schaltkreis; Binärbaumwurzel

20 Abschlusszweig; Binärbaumblatt; Terminal Branch

21 erster Binärbaumzweig; erster innerer Knoten des Binärbaums; erster Nested Branch

22 zweiter Binärbaumzweig; zweiter innerer Knoten des Binärbaums; zweiter Nested 

35 Branch
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3 Vergleichsschaltung; Segment

30 erstes Oder-Gatter

31 erstes Und-Gatter

5 32 (4-fach) Multiplexer

33 erstes (2-bit SIPO-) Schieberegister

34 zweites Und-Gatter

35 drittes Und-Gatter

36 (1-Bit) Flipflop

10 37 zweites (N-bit SIPO-) Schieberegister

38 zweites Oder-Gatter

4 Schiebefensterdetektor; Slider

40 erstes Und-Gatter

15 41 erstes (N-bit SIPO-) Schieberegister

42 zweites bidirektionales (M-bit SIPO-) Schieberegister

43 ((M+1)-fach) Multiplexer

44 drittes (K-bit SIPO-) Schieberegister

20 5 Zeitmultiplexer; Time Multiplexer

50 Flipflops

51 Und-Gatter

52 selbst initialisierter (K-bit) Ringzähler

53 Oder-Gatter

25 54 D-Flipflop
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PATENTANSPRÜCHE

1. Neuromorpher Musterdetektor (2),

welcher ausgebildet ist, wenigstens zwei 1-Bit Eingangssignale (E1-EN) eines zu erkennenden Mus-

ters zu erhalten,

5 mit wenigstens zwei Vergleichsschaltungen (3), welche jeweils ausgebildet sind, 

eines der 1-Bit Eingangssignale (E1-EN) zu erhalten,

die Anzahl der „high“-Zustände oder der „low“-Zustände des jeweiligen 1-Bit Eingangssi-

gnals (E1-EN) innerhalb eines vorbestimmten Zeitraums zu zählen,

die Anzahl der gezählten Zustände mit einem vorbestimmten Schwellwert der jeweiligen 

10 Vergleichsschaltung (3) zu vergleichen und

bei Überschreiten des Schwellwerts auf die erfolgte Erkennung des zu erkennenden Mus-

ters hinzuweisen.

2. Neuromorpher Musterdetektor (2) nach Anspruch 1, dadurch gekennzeichnet, dass

die eine Vergleichsschaltung (3) der anderen Vergleichsschaltung (3) erstrangig untergeordnet ist,

15 wobei die übergeordnete Vergleichsschaltung (3) ausgebildet ist, nur dann auf die erfolgte Erken-

nung des zu erkennenden Musters hinzuweisen, falls der Schwellwert der übergeordneten Ver-

gleichsschaltung (3) überschritten und zeitgleich von der erstrangig untergeordneten Vergleichs-

schaltung (3) auf die erfolgte Erkennung des zu erkennenden Musters hingewiesen wird.

3. Neuromorpher Musterdetektor (2) nach Anspruch 2, gekennzeichnet durch

20 wenigstens eine weitere Vergleichsschaltung (3), welche parallel zu der untergeordneten Ver-

gleichsschaltung (3) angeordnet ist,

wobei die übergeordnete Vergleichsschaltung (3) ausgebildet ist, nur dann auf die erfolgte Erken-

nung des zu erkennenden Musters hinzuweisen, falls der Schwellwert der übergeordneten Ver-

gleichsschaltung (3) überschritten und zeitgleich von den erstrangig untergeordneten Vergleichs-

25 schaltungen (3) jeweils auf die erfolgte Erkennung des zu erkennenden Musters hingewiesen 

wird.
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4. Neuromorpher Musterdetektor (2) nach einem der Ansprüche 2 oder 3, gekennzeichnet durch

wenigstens eine weitere Vergleichsschaltung (3), welche zweitrangig untergeordnet zu der erst-

rangig untergeordneten Vergleichsschaltung (3) angeordnet ist,

wobei die erstrangig untergeordnete Vergleichsschaltung (3) ausgebildet ist, nur dann auf die er-

5 folgte Erkennung des zu erkennenden Musters hinzuweisen, falls der Schwellwert der erstrangig 

untergeordneten Vergleichsschaltung (3) überschritten und zeitgleich von der zweitrangig unter-

geordneten Vergleichsschaltung (3) auf die erfolgte Erkennung des zu erkennenden Musters hin-

gewiesen wird.

5. Neuromorpher Musterdetektor (2) nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass

10 die wenigstens drei Vergleichsschaltungen (3) einen Binärbaum mit wenigstens zwei Ebenen bil-

den.

6. Neuromorpher Musterdetektor (2) nach einem der vorangehenden Ansprüche, dadurch gekenn-

zeichnet, dass

die Vergleichsschaltungen (3) identisch ausgebildet sind.

15 7. Neuromorpher Musterdetektor (2) nach einem der vorangehenden Ansprüche, dadurch gekenn-

zeichnet, dass

bei Überschreiten des Schwellwerts ein 1-Bit Ausgangssignal (P1-Pk) der jeweiligen Vergleichs-

schaltung (3) auf den „high“-Zustand, ansonsten auf den „low“-Zustand, gesetzt wird, oder umge-

kehrt.

20 8. Neuromorpher Musterdetektor (2) nach Anspruch 7, dadurch gekennzeichnet, dass

die Vergleichsschaltungen (3) ausgebildet sind, jeweils ein 1-Bit Steuersignal (I1-IN) zu erhalten und 

in Reaktion auf einen „high“-Zustand oder auf einen „low“-Zustand des jeweiligen 1-Bit Steuersi-

gnals (I1-IN) das 1-Bit Ausgangssignal (P1-Pk) der jeweiligen Vergleichsschaltung (3) auf den „low“-

Zustand zu setzen.

25 9. Neuromorpher Musterdetektor (2) nach einem der vorangehenden Ansprüche, dadurch gekenn-

zeichnet, dass

der vorbestimmte Schwellwert der Anzahl der Zustände der jeweiligen Vergleichsschaltung (3) 

vorgibt, wann das zu erkennende Muster als erkannt angesehen wird.

232
T
hi
s
pu

bl
ic
at
io
n
is

in
cl
ud

ed
as

pu
bl
is
he

d.
Fo

r
ar
ch

iv
e
on

ly
.D

o
no

tr
ed

is
tr
ib
ut
e.



24

10. Neuromorpher Musterdetektor (2) nach einem der vorangehenden Ansprüche, dadurch gekenn-

zeichnet, dass

die Vergleichsschaltungen (3) jeweils einen Schiebefensterdetektor (4) aufweisen, welcher jeweils 

ausgebildet ist, das jeweilige 1-Bit Eingangssignal (E1-EN) zu erhalten und die Anzahl der „high“-Zu-

5 stände oder der „low“-Zustände des jeweiligen 1-Bit Eingangssignals (E1-EN) innerhalb des vorbe-

stimmten Zeitraums zu zählen.

11. Neuromorpher Musterdetektor (2) nach Anspruch 10, dadurch gekennzeichnet, dass

das Zählen der Anzahl der „high“-Zustände oder der „low“-Zustände des jeweiligen 1-Bit Eingangs-

signals (E1-EN) innerhalb des vorbestimmten Zeitraums mittels eines bidirektionalen Schieberegis-

10 ters (42) des jeweiligen Schiebefensterdetektors (4) erfolgt.

12. Neuromorpher Musterdetektor (2) nach einem der vorangehenden Ansprüche, dadurch gekenn-

zeichnet, dass

die Vergleichsschaltungen (3), vorzugsweise deren Schiebefensterdetektor 4, jeweils ein Taktsi-

gnal CLKSPIKE zur Steuerung der Verarbeitung der Pulse und ein Taktsignal CLKPLT zur Steuerung der 

15 Länge der Plateaus erhalten,

wobei die beiden Taktsignale CLKSPIKE und CLKPLT unterschiedlich sind.

13. Neuromorphe Schaltkreisanordnung (1)

mit einer Mehrzahl von neuromorphen Musterdetektoren (2) nach einem der vorangehenden An-

sprüche,

20 wobei jeder neuromorphe Musterdetektor (2) ausgebildet ist, 

das gleiche 1-Bit Eingangssignal (E1-EN) zu erhalten,

ein unterschiedliches 1-Bit Zufallszahlensignal (M1,1-MK,N) zu erhalten,

das jeweilige 1-Bit Eingangssignal (E1-EN) mit dem entsprechenden 1-Bit Zufallszahlensignal 

(M1,1-MK,N) zu verändern, und

25 die Anzahl der „high“-Zustände oder der „low“-Zustände des jeweiligen veränderten 1-Bit 

Eingangssignals (E1-EN) innerhalb eines vorbestimmten Zeitraums zu zählen.
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14. Neuromorphe Schaltkreisanordnung (1) nach Anspruch 13, dadurch gekennzeichnet, dass

wenigstens eine Vergleichsschaltung (3), vorzugsweise alle Vergleichsschaltungen (3) jeweils, ein 

Und-Gatter (35) aufweist, welches ausgebildet ist, das jeweilige 1-Bit Eingangssignal (E1-EN) und 

das entsprechende 1-Bit Zufallszahlensignal (M1,1-MK,N) zu kombinieren.

5 15. Neuromorphe Schaltkreisanordnung (1) nach Anspruch 13 oder 14, dadurch gekennzeichnet, 

dass

die neuromorphe Schaltkreisanordnung (1) ausgebildet ist, 

die Anzahl der 1-Bit Ausgangssignale (P1-Pk) der jeweiligen Vergleichsschaltung (3), welche 

zeitgleich im „high“-Zustand oder im „low“-Zustand sind, zu erfassen und 

10 aus dem Verhältnis der Anzahl von 1-Bit Ausgangssignalen (P1-Pk) im „high“-Zustand oder 

im „low“-Zustand und der Anzahl der neuromorphen Musterdetektoren (2) einen Grad (W) 

der Übereinstimmung zwischen 1-Bit Eingangssignal (E1-EN) und zu erkennendem Muster zu 

bestimmen.

16. Neuromorphe Schaltkreisanordnung (1) nach einem der Ansprüche 13 bis 15, dadurch gekenn-

15 zeichnet, dass

wenigstens eine Vergleichsschaltung (3), vorzugsweise alle Vergleichsschaltungen (3) jeweils, 

einen Zeitmultiplexer (5) aufweist, welcher ausgebildet ist, parallele Ausgangssignale (P1-PK) der 

neuromorphen Musterdetektoren (2) zu einem 1-Bit-Ausgangssignal (O) der neuromorphen 

Schaltkreisanordnung (1) zusammenzuführen.

20
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ZUSAMMENFASSUNG

Die vorliegende Erfindung betrifft einen neuromorphen Musterdetektor (2), welcher ausgebildet ist, 

wenigstens zwei 1-Bit Eingangssignale (E1-EN) eines zu erkennenden Musters zu erhalten, mit wenigstens 

zwei Vergleichsschaltungen (3), welche jeweils ausgebildet sind, eines der 1-Bit Eingangssignale (E1-EN) 

5 zu erhalten, die Anzahl der „high“-Zustände oder der „low“-Zustände des jeweiligen 1-Bit Eingangssi-

gnals (E1-EN) innerhalb eines vorbestimmten Zeitraums zu zählen, die Anzahl der gezählten Zustände mit 

einem vorbestimmten Schwellwert der jeweiligen Vergleichsschaltung (3) zu vergleichen und bei Über-

schreiten des Schwellwerts auf die erfolgte Erkennung des zu erkennenden Musters hinzuweisen.

(Figur 4)
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Abstract

In this paper, a simple yet interpretable, probabilistic model is proposed for the prediction of

reported case counts of infectious diseases. A spatio-temporal kernel is derived from train-

ing data to capture the typical interaction effects of reported infections across time and

space, which provides insight into the dynamics of the spread of infectious diseases. Testing

the model on a one-week-ahead prediction task for campylobacteriosis and rotavirus infec-

tions across Germany, as well as Lyme borreliosis across the federal state of Bavaria,

shows that the proposed model performs on-par with the state-of-the-art hhh4 model. How-

ever, it provides a full posterior distribution over parameters in addition to model predictions,

which aides in the assessment of the model. The employed Bayesian Monte Carlo regres-

sion framework is easily extensible and allows for incorporating prior domain knowledge,

which makes it suitable for use on limited, yet complex datasets as often encountered in

epidemiology.

Introduction

Public-health agencies have the responsibility to detect, prevent and control infections in the

population. In Germany, the Robert Koch Institute collects a wide range of factors, such as

location, age, gender, pathogen, and further specifics, of laboratory confirmed cases for

approximately 80 infectious diseases through a mandatory surveillance system [1]. Since 2015,

an automated outbreak detection system, using an established aberration detection algorithm

[2], has been set in place to help detect outbreaks [3, 4]. However, prevention and control
require quantitative prediction instead of mere detection of anomalies and thus prove more

challenging. For logistical, computational and privacy reasons, epidemiological data is typically

reported or provided in bulk, often grouped by calendar weeks and counties. Predictions thus

have to be made about the number of cases per time-interval and region, based on a history of

such measurements.

Since outbreaks can extend over multiple counties, states or even nations, spatio-temporal

models are typically employed. Some approaches use scan statistics to identify anomalous spa-

tial or spatio-temporal clusters [5, 6], while others model and predict case counts as time series
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or point processes [7, 8]. A major advantage of such predictive models is the additional insight

they can provide into the factors contributing to the spread of infectious diseases.

In general, we distinguish four qualitatively different classes of predictive features: spatial,
temporal, spatio-temporal and (spatio-temporal) interaction effects. The former three are purely

functions of space, time or both, modeling seasonal fluctuations and trends, geographical influ-

ences or localized time-varying effects, such as region-specific demographics or legislation,

respectively. The latter is an autoregressive variable that captures how an observed infection

influences the number of further infections in its neighborhood over time, which depends on

differences in patients’ behavior, transmission vectors, incubation times and duration of the

respective diseases. Even in the absence of direct contagion, previously reported cases can pro-

vide valuable indirect information for predicting future cases through latent variables. The

effect on the expected number of cases at a given place and time due to interactions can thus

be expressed as a (unknown) function of spatial and temporal distance to previously reported

cases. Particularly for regions with less available historic data or those strongly influenced by

their neighbors, e.g. smaller counties close to larger cities [9], incorporating the county’s and

its neighbors’ recent history of case counts can improve predictions.

The state-of-the-art spatio-temporal hhh4 method [7, 10] assumes aggregated case counts

to follow a Poisson or Negative Binomial distribution around a mean value determined by

“epidemic” and “endemic” components. The epidemic component can capture the influence

of previous cases from the same or neighboring counties, e.g. potentially weighted by the coun-

ties’ adjacency order, while the endemic component models the expected baseline rate of

cases.

For not aggregated data, the more general twinstim method [7] models the interaction

effects due to individual cases by a self-exciting point process with predefined continuous

spatio-temporal kernel, rather than through a binary neighborhood relation as in the hhh4
model. Optimizing such a kernel for a specific dataset provides an opportunity to incorporate

or even infer information about the infectious spread of the disease at hand. Using such

smooth spatial kernel functions in favor of e.g. neighborhood graphs between geographical

regions has the additional benefit, that it can also be applied in domains where the shape and

neighborhood relation between such regions is complex. For example within Germany coun-

ties can contain enclaves, e.g. cities that represent a county of their own, or even be composed

of disjoint parts.

In the following, we present a Bayesian spatio-temporal interaction model (referred to as

BSTIM), as a synthesis of both approaches: a probabilistic generalized linear model (GLM)

[11] predicts aggregated case counts within spatial regions (counties) and time intervals (calen-

dar weeks) using a history of reported cases, temporal features (seasonality and trend) and

region-specific as well as demographic information. Like for the twinstim method, interaction

effects are modeled by a continuous spatio-temporal kernel, albeit parameterized with parame-

ters inferred from data. Since the aggregated reporting of case counts per calendar week and

county leaves residual uncertainty about the precise time and location of an individual case,

we model times within the respective week and locations within the respective county as latent

random variables. Monte Carlo methods are employed to evaluate posterior distributions of

parameters as well as predictions, which are subsequently used to assess the quality of the

model.

For three different infectious diseases, campylobacteriosis, rotaviral enteritis and Lyme bor-
reliosis, the interpretability of the inferred components, specifically the interaction effect ker-

nel, is discussed and the predictive performance is evaluated and compared to the hhh4
method.

A Bayesian Monte Carlo approach for predicting the spread of infectious diseases

PLOS ONE | https://doi.org/10.1371/journal.pone.0225838 December 18, 2019 2 / 20
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Materials and methods

We evaluate both the proposed BSTIM as well as the hhh4 reference model on a one-week-

ahead prediction task, where the number of cases in each county is to be predicted for a spe-

cific week, given the previous history of cases in the respective as well as surrounding counties.

Instead of point estimates, we are interested in a full posterior probability distribution over

possible case counts for each county and calendar week—capturing both aleatoric uncertainty

due to the stochastic nature of epidemic diseases as well as epistemic uncertainty due to limited

available training data. The data for this study is provided by the Robert Koch Institute, and

consists of weekly reports of case counts for three diseases, campylobacteriosis, rotavirus infec-

tions and Lyme borreliosis. They are aggregated by county and collected over a time period

spanning from the 1st of January 2011 (2013 for borreliosis) to the 31st of December 2017 via

the SurvNet surveillance system [1]. We use the term “county” to generally refer to rural coun-

ties (Landkreise) and cities (kreisfreie Städte) as well as the twelve districts of Berlin (Bezirke).
Aggregated case counts of diseases with mandatory reporting in Germany can be downloaded

from https://survstat.rki.de. For each of the three diseases, the data preceding 2016 is used for

training the model, while the remaining two years are used for testing. A software implementa-

tion of the BSTI Model presented here is available online at https://github.com/ostojanovic/

BSTIM.

The BSTI Model

The proposed model is optimized to predict the number of reported cases in the future (e.g.

the next week), based on prior case counts. Since epidemiological count data is often overdis-

persed relative to a Poisson distribution [12], i.e. the variance exceeds the mean, we assume

counts are distributed as a Negative Binomial random variable around an expected value μ(t,
x) that varies with time (t) and space (x), and with a scale parameter α� 0. Due to its common

use in combinatorics, the Negative Binomial distribution is often formalized in terms of

parameters r, representing the number of failures in a hypothetical repeated coin flip experi-

ment, and p, representing the success probability in each trial. This can be trivially extended to

real valued coefficients, and reparameterized in terms of μ and α by setting m! pr=1� p and

a! 1
r= . The Negative Binomial distribution has been successfully used in epidemiology [12–

14], since its variance V ¼ mþ am2 allows to model overdispersion in the data for α> 0, while

including the Poisson distribution as a special case for α! 0.

We further assume that the relationship between each feature fi(t, x) and the expected

value μ(t, x) can be expressed in a generalized linear model of the Negative Binomial random

variable Y(t, x) using the canonical logarithmic link function. A half-Cauchy distribution is

used as a weakly informative prior [15] to enforce positivity of the dispersion parameter of

the residual Negative Binomial distribution. For all other parameters, Gaussian priors with

zero mean and standard deviation 10 are chosen. Since the linear predictor of the generalized

linear model combines qualitatively different types of data, specifically interaction effects and

exogenous features such as temporal or demographical information, we employ sensitivity

analysis to verify that the chosen (relative) scales for the priors do not unduly influence the

inferred parameters. To this end, we systematically vary the standard deviation of the prior

distribution for the interaction effect coefficients over the values 0.625, 2.5, 10, 40 and 160.

Since we only observe negligible changes in the posterior parameter distributions (see S4 Fig

through S6 Fig) and resulting predictions (not shown here) for standard deviations 10 and

above, we conclude that the chosen Normal distribution with standard deviation 10 consti-

tutes an adequate weekly informative prior. The full probabilistic model for training can thus

A Bayesian Monte Carlo approach for predicting the spread of infectious diseases
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be summarized as follows:

a � HalfCauchyðg ¼ 2Þ ð1Þ

Wi � Normalðm ¼ 0;s ¼ 10Þ ð2Þ

mðt; xÞ ¼ exp
XN

i¼1

Wifiðt; xÞ

 !

� �ðt; xÞ ð3Þ

Yðt; xÞ � NegBinðmðt; xÞ; aÞ ð4Þ

where:

α is a dispersion parameter

N is the total number of used features

Wi are model weights

fi(t, x) are features varying in time and space

�(t, x) is the exposure varying in time and space

t refers to a time-interval (i.e. one calendar week)

x refers to a spatial region (i.e. one county)

For prediction, the priors over the dispersion parameter and weights are replaced by the

corresponding posterior distribution inferred on the training set.

A schema of our model is shown in Fig 1. To capture the interaction effects between differ-

ent places over time, a continuous spatio-temporal kernel is estimated through a linear combi-

nation of 16 basis kernels. The individual contribution due to each of these basis kernels is

included into the model as a feature. Four temporal periodic basis functions are used to capture

seasonality and five sigmoid basis functions (one for each year of available training data) to

capture temporal trends. Four region-specific features (ratio of population in a county belong-

ing to three age groups and one political component) are used, which results in 29 features. In

addition, the logarithm of the population of each county in the respective year is used as a scal-

ing parameter (exposure) �.

For example, given one parameter sample w = [w1, . . ., w29], inferred from the training set

of campylobacteriosis case counts, the conditional mean prediction within county x during

Fig 1. Model scheme. Exemplary contributions from different features, grouped into interaction, temporal, political

and demographical components, each evaluated in all counties in Germany for campylobacteriosis in the week 30 of

2016. Each county’s total population is always included as an exposure coefficient. We consider three models of

increasing complexity, A, B and C, that differ in whether features are included (✓) or not (-). Information about the

shape of counties within Germany is publicly provided by the German federal agency for cartography and geodesy

(Bundesamt für Kartographie und Geodäsie) (GeoBasis-DE / BKG 2018) under the dl-de/by-2-0 license.

https://doi.org/10.1371/journal.pone.0225838.g001

A Bayesian Monte Carlo approach for predicting the spread of infectious diseases
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week t is determined as follows:

mðt; xÞ ¼ exp
X16

i¼1

wifiðt; xÞ
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

interaction

þ
X20

i¼17

wifiðtÞ
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

periodic

þ
X25

i¼21

wifiðtÞ
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

trend

þ
X29

i¼26

wifiðt; xÞ
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

region‐specific

0

B
B
B
B
@

1

C
C
C
C
A
� �ðt; xÞ
|fflffl{zfflffl}
exposure

ð5Þ

Monte Carlo sampling procedure

The model described above determines the posterior distribution over parameters by the data-

dependent likelihood and the choice of priors. We want to capture this parameter distribution

in a fully Bayesian manner, rather than summarize it by its moments (ie. mean, covariance,

etc.) or other statistics. Since an analytic solution is intractable, we use Markov Chain Monte

Carlo (MCMC) methods to generate unbiased samples of this posterior distribution. These

samples can be used for evaluation of performance measures (here deviance and Dawid-Sebas-

tiani score; cf. section Predictive performance evaluation and model selection), visualization or

as input for a superordinate probabilistic model.

Our model combines features that can be directly observed (e.g. demographic information)

with features that can only be estimated (e.g. interaction effects, due to uncertainty caused by

data aggregation). To integrate the latter into the model, we generate samples from the distri-

bution of interaction effects features as outlined in section Interaction effects.
The sampling procedure generates samples from the prior distribution over parameters and

combines them with training data and our previously generated samples of the interaction

effect features to produce samples of the posterior parameter distribution. These samples from

the inferred joint distribution over parameters are then used to generate samples of the poste-

rior distribution of model predictions for testing data.

We employ a Hamiltonian Monte Carlo method, No-U-Turn-Sampling [16], implemented

in the probabilistic programming package pyMC3 [17]. To evaluate proper convergence of the

sampling distribution to the desired (but unknown) posterior distribution, four independent

Markov chains are generated and their marginal distributions compared using the Gelman-

Rubin diagnostic R̂ [18], which assesses the relation between the within-chain and the

between-chains variance.

Interaction effects

Each reported case provides valuable information about the expected number of cases to come

in the near future and close proximity. We suppose that this effect of an individual reported

infection on the rate of future (reported) infections in the direct neighborhood can be captured

by some unknown function κ(dtime(t?, tk), dgeo(x?, xk)), which we refer to as interaction effect
kernel in the following, where (tk, xk) refer to the time and location of the k-th reported case

and (t?, x?) represent the time and location of a hypothetical future case. Here, dgeo(x, y) repre-

sents the geographical distance between two locations x and y, whereas dtime(t, s) denotes the

time difference between two time points t and s. Thus, κ(�, �) is a radial, time- and location-

invariant kernel, depending only on the spatial and temporal proximity of the two (hypotheti-

cal) cases. For the sake of simplicity, we assume that interaction effects due to individual infec-

tions add up linearly.

Since κ is not known a-priori for each disease, we wish to infer it from data. To this end, we

approximate it by a linear combination of spatio-temporal basis kernels κi,j with coefficients wi

A Bayesian Monte Carlo approach for predicting the spread of infectious diseases
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that can be inferred from training data:

kð4t;4xÞ � k̂ð4t;4xÞ≔
X

i

wikIi ;Jið4t;4xÞ

where Ii≔ di 4e; Ji≔ ði � 1Þmod 4þ 1=

ð6Þ

As the basis functions for the interaction effect kernel, we choose the products

ki;jð4t;4xÞ≔kTi ð4tÞ � k
S
j ð4xÞ between one temporal (kTi ) and one spatial factor (kSj ),

each (cf. Fig 2). As temporal factors, we use the third order B-spline basis functions

kTi ¼ Ni;3 for i ¼ f1; 2; 3; 4g as defined in [19], with the knot vector [0, 0, 7, 14, 21, 28, 35]

(measured in days). The multiplicity 2 of the first knot enforces kT
1
ð0Þ ¼ 0. This results in four

smooth unimodal functions, spanning the overlapping time interval from zero to two weeks,

zero to three weeks, one to four weeks and two to five weeks after a reported case, respectively.

Fig 2. Spatial and temporal basis functions for interaction kernel. The inferred interaction kernel is composed of a linear

combination of spatio-temporal basis functions (four-by-four grid of contour plots), each of which is a product of one spatial

(left column) and one temporal factor (top row).

https://doi.org/10.1371/journal.pone.0225838.g002
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Outside these intervals, the functions are identically zero. Acausal effects (i.e. the influence of a

reported case on hypothetical other cases reported at an earlier time) as well as effects more

than five weeks after a reported case are thus excluded. This accounts for the typical incubation

times for campylobacteriosis [20] and rotavirus infections [21], and early symptoms of Lyme

Borreliosis [22], as well as potential reporting delays. As spatial factors, we use exponentiated

quadratic kernels (i.e. univariate Gaussian functions) centered at a distance of 0km to a

reported case, with shape parameters σ of 6.25km, 12.5km, 25.0km, and 50.0km. These spatial

kernels are wide enough to cover the typical daily commuting distances within Germany,

which amount to 25km or less for the majority of commuters [23], while being narrow enough

to capture only local effects. See Fig 2 for an illustration of how the basis functions κi,j are

constructed.

Since the contributions of individual cases are assumed to sum up linearly, the total influ-

ence of all cases that were previously reported at times and places (tk, xk), k 2 1. . .n onto the

expected rate of cases reported at a later time t and location x is given by:

X16

i¼1

wifiðt; xÞ where

fiðt; xÞ≔
Xn

k¼1

kIi ;Jiðdtimeðt; tkÞ; dgeoðx; xkÞÞ

ð7Þ

Each fi(t, x) for i 2 {1, . . ., 16} is a spatio-temporal function that depends on all cases

reported prior to t, providing us with a total of 16 features for modeling interaction effects. By

determining the corresponding coefficients wi, the fitting procedure thus allows us to infer an

interaction effect kernel k̂ in a 16-dimensional parameterized family from data. It should be

noted, however, that since the basis functions κi,j capture strongly correlated and possibly

redundant information, the effective number of degrees of freedom may be well below 16.

Since we work with aggregated data at a spatial resolution of counties and a temporal resolu-

tion of calendar weeks, the exact time and location of an individual case report, as well as time

and location of a hypothetical future case, are conditionally independent random variables

given the county and week in which they occur. Because of this epistemic uncertainty, the fea-

tures fi(t, x) derived in Eq 7 are thus random variables themselves. To deal with this uncer-

tainty, the twinstim model proposed in [7] suggests to replace these features by their expected

values, which can be numerically approximated efficiently. Here, instead of using such point-

estimates, which might lead the model to underestimate its uncertainty, we want to incorpo-

rate the features fi(t, x) directly into our probabilistic model and thus need to account for their

full probability distribution.

While this distribution is intractable to calculate analytically, we can generate unbiased

samples from it through rejection sampling: For a case reported in a given calendar week and

county, possible sample points of a precise time and location can be independently generated

by uniformly drawing times from within the corresponding week and locations from a rectan-

gle containing the county, rejecting points that fall outside the county’s boundary. By ran-

domly drawing a sample time and location for each reported case, we can thus generate an

unbiased sample of the (unavailable) data prior to aggregation that accurately reflects the

uncertainty caused by the aggregation procedure. Using these resulting sample times and loca-

tions in place of tk and xk in Eq 7 yields unbiased samples of the features fi(t, x), which are in

turn used when generating samples of the model’s posterior parameter distribution (cf. section

Monte Carlo sampling procedure).

A Bayesian Monte Carlo approach for predicting the spread of infectious diseases
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It bears repeating that what we refer to as interaction effect features in this paper are thus in

fact latent random variables due to the epistemic uncertainty caused by aggregated reporting

of infections by counties and calendar weeks.

Additional features

Infection rates vary in time due to natural processes, such as seasons and climate trends, evolu-

tion of pathogens and immunization of the population, as well as societal developments such

as scientific and technological advancement and medical education. Within Germany these

effects may not differ much across space and can thus be included into the model as feature

functions fi(t) that only depend on time. For modeling yearly seasonality, four sinusoidal basis

functions (ie. sin(2π � t � ωyearly), sin(4π � t � ωyearly), cos(2π � t � ωyearly), cos(4π � t � ωyearly)) are

used as temporal periodic components, where ωyearly = (1 year)−1. Slower time-varying effects

are subsumed in a general trend modeled by a linear combination of one logistic function (ie.

ð1þ expð� t� ti
2
� oweeklyÞÞ

� 1
) centered at the beginning of each year (τi) with slope ½ ωweekly,

where ωweekly = (1 week)−1.

Due to the historical division between eastern and western Germany, and their different

developments, some structural differences remain, such as unemployment rate, density of hos-

pitals and doctors, population density, age structure etc. [24, 25] To account for such system-

atic differences, a political component, which we refer to as the east/west component in the

following, is introduced which labels all counties that were part of the former German Demo-

cratic Republic as 1 and counties that were part of the Federal Republic of Germany as 0. Since

Berlin itself was split into two parts, yet todays counties don’t accurately reflect this historic

division, counties within Berlin are labeled with an intermediate value of 0.5.

Since diseases can affect children and elderly in different ways, yearly demographic infor-

mation about each county is incorporated into the model. The logarithm of the fraction of

population belonging to three age groups (ages [0 − 5), [5 − 20) and [20 − 65)) is used. The age

group of 65 years and above accounts for the remaining share of the population and thus is a

redundant variable with respect to the other three age groups and the total population. The

total population of each county acts as a scaling factor for the predicted number of infections.

Predictive performance evaluation and model selection

To evaluate the predictive performance of the model, forecasts of the number of infections are

made one calendar week ahead of time for each disease and each county. To determine the rel-

evance of different features, model selection is performed on the training dataset between

three models of different complexity [Fig 1]:

model A—includes interaction and temporal (periodic and trend) components,

model B—includes interaction, temporal and political components,

model C—includes interaction, temporal, political and demographic components.

The Widely Applicable Information Criterion [26](WAIC, also referred to as Watanabe-
Akaike information criterion, is applied to the posterior distribution over parameters and pre-

dictions from the training set to determine which combination of features (i.e. model A, B or

C) minimizes the generalization error. Similar to the deviance information criterion, WAIC

assesses the model’s ability to generalize by estimating the out-of-sample expectation, while

penalizing a large effective number of parameters. This is relevant here since modeling interac-

tion effects introduces multiple features that capture redundant information. However, rather

than evaluating the log-posterior at a parameter point-estimate, the WAIC calculates the

A Bayesian Monte Carlo approach for predicting the spread of infectious diseases
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empirical mean over the entire posterior distribution, which leads to a better estimate of the

out-of-sample expectation [27], and is therefore ideally suited for sampling-based approaches.

Different error measures are applied to evaluate the fit of the predictive distribution for the

test set to observations. Deviance of the Negative Binomial distribution (i.e. the expected dif-

ference between the log-likelihood of observations and the log-likelihood of the predicted

means) is used as a likelihood-based measure and the Dawid-Sebastiani score (a covariance-

corrected variant of squared error, cf. [28]) is included as a distribution-agnostic proper scor-

ing rule.

To evaluate the performance of the model presented here as well as an hhh4 model imple-

mentation for reference, we compare the resulting distributions of scores across counties.

The hhh4 model reference implementation

We use an hhh4 model for Negative Binomial random variables, implemented in the R pack-

age “surveillance” [7], with a mean prediction composed of an epidemic and an endemic com-

ponent. The epidemic component is a combination of an autoregressive effect (models

reproduction of the disease within a certain region) and a neighborhood effect (models trans-

mission from other regions). The endemic component models a baseline rate of cases due to

the same features as described above. The reference model is trained and evaluated on the

same datasets as the BSTIM.

Results and discussion

Testing models of varying complexity (see Fig 1) reveals that the most complex model (model

complexity C, including interaction effects, temporal, political as well as demographical fea-

tures) generalizes best as measured by WAIC (see Table 1) for all three different tested diseases

(campylobacteriosis, rotavirus and borreliosis). For the remainder of this text, we thus focus

only on the full model variety C. The posterior parameter distribution inferred from the train-

ing data can be analyzed in itself, which provides valuable information about the disease at

hand as well as the suitability of the model. Subsequently, it is used to generate one-week-

ahead predictions for the test data.

For each model configuration and disease, the sampling procedure is run until a total of

1000 valid samples of the joint posterior distribution have been generated, which each requires

approximately four hours of run-time on a conventional desktop machine (utilizing 4 cores of

an AMD Ryzen 5 1500x processor). The sampling procedure converges to the same posterior

for all independent chains, as can be seen by inspecting the posterior marginal distributions of

each parameter in S1 to S3 Figs, which is quantified by the Gelman-Rubin diagnostics shown

in S10 Fig.

Table 1. Training set WAIC scores for the three tested diseases and the three levels of model complexity.

model campylobacteriosis rotavirus borreliosis

A 423279.3 349182.37 31359.62

B 420172.1 339143.27 (31359.62)

C 420010.64 338219.46 30643.49

Since for borreliosis the model is trained and evaluated only within the western state of Bavaria, the east/west feature is constantly zero, and the models A and B thus

coincide.

https://doi.org/10.1371/journal.pone.0225838.t001
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PLOS ONE | https://doi.org/10.1371/journal.pone.0225838 December 18, 2019 9 / 20

244
T
hi
s
pu

bl
ic
at
io
n
is

in
cl
ud

ed
as

pu
bl
is
he

d.
Fo

r
ar
ch

iv
e
on

ly
.D

o
no

tr
ed

is
tr
ib
ut
e.



The inferred model

The procedure outlined above produces samples from the posterior parameter distribution,

which in turn provides a probability distribution over interaction kernels. Due to the large

number of free parameters (16) involved (see Fig 2), the family of parameterized kernels is flex-

ible enough to capture different disease-specific interactions in time and space. Despite the

fact that much more complex interaction effect kernels could be learned, the kernels inferred

from data appear to factorize into a specific spatial and temporal profile for each disease. The

mean interaction kernel for campylobacteriosis (see Fig 3, 1A) shows the furthest spatial influ-

ence over up to 75 km, whereas rotavirus (see Fig 3, 2A) and borreliosis (see Fig 3, 3A) are

more localized within a radius of up to 25 km. Borreliosis exhibits longer lasting interaction

effects, extending up to four weeks. Despite the fact that borreliosis is not contagious between

humans, this is consistent with a pseudointeraction effect due to a localized, slowly changing

latent variable such as the prevalence of infected ticks or other seasonal factors. The kernel for

campylobacteriosis shows a clear drop in the third week after an infection, which might indi-

cate recovery from the disease, but we advise caution against overinterpretion of this negative

interaction.

Looking at individual samples from the respective kernel distributions (see Fig 3, rows B

and C) reveals a degree of uncertainty over the precise kernel shape for the different diseases:

Fig 3. Learned interaction effect kernels. Kernels for campylobacteriosis are shown in 1A-C, for rotavirus in 2A-C and for borreliosis in 3A-C.

Mean interaction kernels are shown in the row A, while rows B and C show two random samples from the inferred posterior distribution over

interaction kernels.

https://doi.org/10.1371/journal.pone.0225838.g003
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while there is little variation in the kernel shape inferred for rotavirus, there is uncertainty

about the temporal profile of interactions for campylobacteriosis.

The seasonal components (see Fig 4) for campylobacteriosis and borreliosis show a yearly

peak in July and June, respectively. In the case of rotavirus the incidence rate is higher in

spring with a peak from March to April. The learned trend components capture the disease-

specific baseline rate of infections, which remains stable throughout the years 2013 to 2016.

While there is little uncertainty in the seasonal component, there is a high degree of uncer-

tainty in the constant offset of the trend component. The effect of combining both contribu-

tions within the model’s exponential nonlinearity results in higher uncertainty around larger

values.

For campylobacteriosis and, to a lesser extent, rotavirus reported incidence rates are higher

in regions formerly belonging to eastern Germany (see Fig 5). The parameters inferred for

demographic components (see Fig 5) show the role that age stratification plays for susceptibil-

ity. For all three diseases, a larger share of children and adolescents (ages 5-20 years) in the

general population is indicative of increased incidence rates. Additionally, working-age adults

(ages 20-65 years) appear to increase the incidence rate of borreliosis. It should be noted that

this does not necessarily imply an increased susceptibility of the respective groups themselves,

Fig 4. Learned temporal contributions. Periodic contributions over the course of three years (2013-2016) for all three diseases are shown in the

row A, trend contributions in the row B and their combination in the row C. Red lines show the mean exponentiated linear combination of

periodic or trend or both features through the respective parameters. Dashed lines show random samples thereof; the shaded region marks the

25%-75% quantile.

https://doi.org/10.1371/journal.pone.0225838.g004
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but could instead be due to latent variables correlated with age stratification, such as economic

or cultural differences. The pairwise joint distributions reveal strong (anti-)correlations of the

coefficients associated with the demographic and political components. E.g. the coefficient

associated with age group [20-65) is strongly correlated with the coefficient associated with the

east/west component, which implies ambiguity in the optimal choice of parameters.

The posterior probability over the dispersion parameter α (see Fig 5) is tightly distributed

around the respective disease specific means. With small values of α, the distribution of case

counts for campylobacteriosis approaches a Poisson distribution, whereas the corresponding

distributions for rotavirus and borreliosis are over-dispersed and deviate more from Poisson

distributions.

Predictive performance

The one-week-ahead predictions are shown in Fig 6, for two selected cities (Dortmund and

Leipzig for campylobacteriosis and rotavirus, Nürnberg (Nuremberg) and München (Munich)

for borreliosis), together with the corresponding prediction from the reference hhh4 model [7]

fitted to the same data. A choropleth map of Germany (or the federal state of Bavaria in the

case of borreliosis) shows the individual predictions for each county in one calendar week as

an example. See also S8, S9 and S10 Figs for predictions for 25 additional counties.

Fig 5. Learned weights for political and demographic components. Plots of the pairwise marginal distributions between inferred coefficients

for three age groups and the east/west component for all three diseases are shown in row A. The marginal distribution of each coefficient shows

a narrow unimodal peak, yet the pairwise distributions show that the individual features are clearly not independent. Row B shows the inferred

posterior distributions of the overdispersion parameter α for three diseases. Values of α obtained using the hhh4 reference model are indicated

with a dashed black line. The inferred values for the dispersion parameter α are different, yet of similar magnitude, between the two models.

https://doi.org/10.1371/journal.pone.0225838.g005
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The BSTIM fits the mean of the underlying distribution of the data well. For rotavirus and

borreliosis, it appears to overestimate the dispersion for the cities shown in Fig 6 as indicated

by most data points falling within the inner 25%-75% quantile. This may be due to a too high

dispersion parameter α (cf. Fig 5) or uncertainty about model parameters. It should be noted,

Fig 6. Predictions of case counts for various diseases by county. Reported infections (black dots), predictions of case counts by BSTIM

(orange line) and the hhh4 reference model (blue line) for campylobacteriosis (column 1), rotavirus (column 2) and borreliosis (column 3) for

two counties in Germany (for campylobacteriosis and rotavirus) or Bavaria (borreliosis), are shown in rows A and B. The shaded areas show the

inner 25%-75% and 5%-95% percentile. Row C shows predictions of the respective disease for each county in Germany or the federal state of

Bavaria in week 30 of 2016 (indicated by a vertical red line in rows A and B). Information about the shape of counties within Germany is

publicly provided by the German federal agency for cartography and geodesy (Bundesamt für Kartographie und Geodäsie) (GeoBasis-DE / BKG

2018) under the dl-de/by-2-0 license.

https://doi.org/10.1371/journal.pone.0225838.g006

A Bayesian Monte Carlo approach for predicting the spread of infectious diseases

PLOS ONE | https://doi.org/10.1371/journal.pone.0225838 December 18, 2019 13 / 20

248
T
hi
s
pu

bl
ic
at
io
n
is

in
cl
ud

ed
as

pu
bl
is
he

d.
Fo

r
ar
ch

iv
e
on

ly
.D

o
no

tr
ed

is
tr
ib
ut
e.



however, that the optimal dispersion parameter itself may vary from county to county, whereas

our model infers only one single value for all counties together. The resulting predictions for

all three diseases are smoother in time and space (cf. the chloropleth maps in Fig 6) than the

predictions by the reference hhh4 model. We attribute this to the smooth temporal basis func-

tions and spatio-temporal interaction kernel of our model.

To quantitatively compare the performance of both models, we calculate the distributions

of deviance and Dawid-Sebastiani score over all counties for BSTIM and the hhh4 reference

model as shown in Fig 7. Both measures show a very similar distribution of errors between

both models for all three diseases, as it can be seen in Table 2. Only for borreliosis, the hhh4
model appears to be more sensitive to outliers.

Benefits of probabilistic modeling for epidemiology

Probabilistic modeling relies on the specification of prior probability distributions over

parameters [17]. In the context of epidemiology, this makes it possible to incorporate domain

knowledge (e.g. we know that case counts tend to be overdispersed relative to Poisson distribu-

tions, but not to which degree for a specific disease) as well as modeling assumptions. This is

particularly relevant for diseases with limited available data (e.g. those not routinely recorded

Fig 7. Evaluation of prediction performance. The distribution of deviance over counties is shown in row A for BSTIM (blue) and the

reference hhh4 model (red) for all three diseases. The corresponding distribution of Dawid-Sebastiani scores is shown in row B.

https://doi.org/10.1371/journal.pone.0225838.g007

Table 2. Deviance and Dawid-Sebastiani score (mean ± standard deviation) for all three diseases and both BSTIM and the hhh4 model.

disease score BSTIM hhh4
campylob. deviance 1.11 ± 0.3 1.11 ± 0.26

DS score 2.49 ± 1.17 2.47 ± 1.06

rotavirus deviance 1.03 ± 0.32 1.04 ± 0.3

DS score 2.08 ± 2.17 2.1 ± 2.54

borreliosis deviance 0.81 ± 0.27 0.85 ± 0.27

DS score 0.74 ± 1.54 1.63 ± 2.24

https://doi.org/10.1371/journal.pone.0225838.t002
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through surveillance), where appropriately chosen priors are required to prevent overfitting.

The framework can easily be extended to include additional features or latent variables. For

example, we introduce precise locations and times of individual cases as latent variables, given

only the counties and calendar weeks in which they occurred.

Probabilistic models as discussed here provide samples of the posterior distribution of

parameters as well as model predictions. This allows for analysis that is not possible with point

estimation techniques such as maximum likelihood estimation. In epidemiology, datasets can

be small, noisy or collected with low spatial or temporal resolution. This can lead to ambiguity,

where the observations could be equally well attributed to different features and thus different

model parameterizations are plausible. While maximum likelihood estimation in such a situa-

tion selects only the single most likely model, Bayesian modeling captures the full distribution

over possible parameters and predictions, and thus preserves information about the uncer-

tainty associated with the parameters of the model itself. Analyzing the parameter distribution

can thus help identify redundant or uninformative features. For example, an inspection of the

posterior marginal distributions of the model parameters in S1 Fig shows, that e.g. the first

parameter associated with the trend component, that constitutes an additive “bias” term, is

subject to larger variance, which could indicate, that this coefficient is redundant given the

other features and might inform further investigation.

Samples from the inferred parameter distributions are afterwards used to derive samples of

predicted future cases. The resulting predictions thus incorporate both noise assumptions

about the data as well as model uncertainty. This can be relevant for determining confidence

intervals, in particular in situations where model uncertainty is large. The samples of the pre-

dictive distribution can in turn be used for additional processing, or if predictions in the form

of point estimates are desired, they can be summarized by the posterior mean.

Possible extensions

To account for overdispersion in the data, we use a Negative Binomial distribution in this

study. Other choices are possible, e.g. zero-inflated distributions [8, 12] or quasi-Poisson dis-

tributions [29], each of which has a different implication for the resulting model. Since the

Negative Binomial distribution assigns more weight to smaller counts relative to quasi-Poisson

[29], the latter may be a more adequate choice when accurately predicting higher counts,

e.g. during outbreaks, is critical. If there are differences between individual counties, that are

suspected to lead to varying degrees of overdispersion, the overdispersion parameter α of the

Negative Binomial distribution could also be chosen to vary in time and space like the corre-

sponding mean μ [30, 31].

Whereas spatio-temporal interaction effects are here modeled as a function of geographical

proximity, the kernel’s composite basis functions make it possible to use alternative spatial dis-

tance measures, e.g. derived from transportation networks for people or goods [32]. For dis-

eases where the kernel clearly factorizes into a single temporal and spatial component, a

simpler spatial kernel function with a parameter for the bandwidth could be chosen. This

allows including further prior assumptions or constraints, e.g. strict non-negativity or power

law characteristics of interactions [33].

Due to the flexibility of the probabilistic modeling and sampling approach, additional vari-

ables can be easily included and their influence analyzed (e.g. weather data, geographical fea-

tures like forests, mountains and water bodies, the location and size of hospitals, vaccination

rates, migration statistics, socioeconomic features, population densities, self-reported infec-

tions on social media [34], work, school and national holidays, weekends and large public

events). For features where precise values are not known, probability distributions could be

A Bayesian Monte Carlo approach for predicting the spread of infectious diseases
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specified and included in the probabilistic model, which could improve the model’s estimate

of uncertainty. For example, since the precise locations and times of individual infections are

not publicly known, we simply assume a geographically and temporally uniform distribution

of cases within the given county and calendar week. The conditional probability distributions

could be refined by incorporating additional information (e.g. weekends and population den-

sity maps). However, precise information about place and time of infections are available to

local health agencies. The model presented here could readily be implemented there to use this

more accurate data.

In this study, we assume that the presented model, due to time-varying features as well

as interaction effects is flexible enough to model the dynamics of the diseases in question

throughout the year. There may, however, be influential latent variables that cannot be explic-

itly included as exogenous variables, in particular for diseases with very pronounced epidemic

outbreaks. In such cases, the ‘outbreak’ stage of the disease could be modeled separately from

the baseline stage, thereby increasing the degrees of freedom in the model. This has been dem-

onstrated for dengue fever [8], where Markov switching is employed to detect sudden changes

in the expected number of cases and provide early warnings when such a state transition

occurs.

Conclusion

In this paper, a probabilistic model is proposed for predicting case counts of epidemic diseases.

It takes into account a history of reported cases in a spatially extended region and employs

MCMC sampling techniques to derive posterior parameter distributions, which in turn are

incorporated in predicted probability distributions of future infection counts across time and

space.

For all three tested diseases (campylobacteriosis, rotavirus and borreliosis) the same model,

using interaction effects, temporal, political and demographic information, performs well and

produces smooth predictions in time and space. For each disease, the inferred spatio-temporal

kernels capture the specific interaction effects in a single function, that can be visualized and

interpreted, and can be applied regardless of the topology of counties or their neighborhood

relationships. A comparison with the standard hhh4 model, which uses maximum likelihood

estimation instead of Bayesian inference, shows comparable performance. At the expense of

higher computational costs than the point estimate used in hhh4, the sampling approach

employed here provides information about the full posterior distribution of parameters and

predictions. The posterior parameter distribution provides information about the relevance of

the corresponding features for the inferred model, and helps in identifying redundant features

or violated model assumptions. The inferred features of our model are interpretable and their

individual contribution to the model prediction can be analyzed: spatio-temporal interactions

reveal information about the dynamic spread of the disease, temporal features capture seasonal

fluctuations and long-term trends, and the assigned weights indicate relevance of additional

features. The posterior predictive distribution also accounts for the uncertainty about parame-

ters, e.g. due to simplifying model assumptions or a lack of data, rather than just the variability

inherent in the data itself. This additional information is valuable for public-health policy-

making, where accurate quantification of uncertainty is critical.

Supporting information

S1 Fig. Marginal posterior distributions of all parameters for campylobacteriosis. For each

of four Markov chains, the mean (dot), the range from the 25% to 75% percentile (thick hori-

zontal lines) as well as the 2.5% to 97.5% percentile (thin horizontal lines) are shown. For all
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parameters, these summary statistics of the marginal distribution are similar across all four

chains, indicating convergence of the MCMC sampling scheme (see also S7 Fig).

(TIFF)

S2 Fig. Marginal posterior distributions of all parameters for rotavirus. For each of four

Markov chains, the mean (dot), the range from the 25% to 75% percentile (thick horizontal

lines) as well as the 2.5% to 97.5% percentile (thin horizontal lines) are shown. For all parame-

ters, these summary statistics of the marginal distribution are similar across all four chains,

indicating convergence of the MCMC sampling scheme (see also S7 Fig).

(TIFF)

S3 Fig. Marginal posterior distributions of all parameters for Lyme borreliosis. For each of

four Markov chains, the mean (dot), the range from the 25% to 75% percentile (thick horizon-

tal lines) as well as the 2.5% to 97.5% percentile (thin horizontal lines) are shown. For all

parameters, these summary statistics of the marginal distribution are similar across all four

chains, indicating convergence of the MCMC sampling scheme (see also S7 Fig).

(TIFF)

S4 Fig. Sensitivity analysis for campylobacteriosis. Marginal posterior distributions of all

parameters are shown for five different scales sWIA
¼ f0:625; 2:5; 10:0; 40:0; 160:0g (color

coded), which includes the special case sWIA
¼ 10 (see also S1 Fig) as used throughout this

paper. For priors with standard deviation larger than 2.5, there is little qualitative change in

the posterior distribution.

(TIFF)

S5 Fig. Sensitivity analysis for rotavirus. Marginal posterior distributions of all parameters

are shown for five different scales sWIA
¼ f0:625; 2:5; 10:0; 40:0; 160:0g (color coded), which

includes the special case sWIA
¼ 10 (see also S2 Fig) as used throughout this paper. For priors

with standard deviation larger than 2.5, there is little qualitative change in the posterior distri-

bution.

(TIFF)

S6 Fig. Sensitivity analysis for Lyme borreliosis. Marginal posterior distributions of all

parameters are shown for five different scales sWIA
¼ f0:625; 2:5; 10:0; 40:0; 160:0g (color

coded), which includes the special case sWIA
¼ 10 (see also S3 Fig) as used throughout this

paper. Here, the choice of prior has considerably more impact on the posterior distribution

than for campylobacteriosis (see S4 Fig) or rotavirus (see S5 Fig), for both of which more train-

ing data is available. For a narrow prior with standard deviation 0.625, the interaction effect

coefficients appear to be strongly regularized towards zero.

(TIFF)

S7 Fig. Convergence diagnostics of MCMC chains. Gelman-Rubin diagnostics (red dots) for

all parameters for campylobacteriosis (1A), rotavirus (2B) and borreliosis (3C). The values all

lie close to 1.0 for all parameters, indicating convergence of the sampling procedure.

(TIFF)

S8 Fig. Predictions of case counts for campylobacteriosis for various counties across Ger-

many. Reported infections (black dots), predictions of case counts by BSTIM (orange line)

and the hhh4 reference model (blue line) for campylobacteriosis for 25 counties in Germany.

The shaded areas show the inner 25%-75% and 5%-95% percentile.

(TIFF)
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S9 Fig. Predictions of case counts for rotavirus for various counties across Germany.

Reported infections (black dots), predictions of case counts by BSTIM (orange line) and the

hhh4 reference model (blue line) for rotavirus for 25 counties in Germany. The shaded areas

show the inner 25%-75% and 5%-95% percentile.

(TIFF)

S10 Fig. Predictions of case counts for borreliosis for various counties across Bavaria.

Reported infections (black dots), predictions of case counts by BSTIM (orange line) and the

hhh4 reference model (blue line) for borreliosis for 25 counties in Bavaria. The shaded areas

show the inner 25%-75% and 5%-95% percentile.

(TIFF)
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3. Gertler M, Dürr M, Renner P, Poppert S, Askar M, Breidenbach J, et al. Outbreak of following river flood-

ing in the city of Halle (Saale), Germany, August 2013. BMC Infectious Diseases. 2015; 15(1):1–10.

https://doi.org/10.1186/s12879-015-0807-1

4. Salmon M, Schumacher D, Burmann H, Frank C, Claus H, Höhle M. A system for automated outbreak
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