
MASTER’S THESIS

Adaptation of Neuronal Activation
Functions to Arbitrary Distributions

of In- and Output

April 20th, 2015

Author:

Johannes LEUGERING

Supervisors:

Prof. Dr. Gordon PIPA

MSc. Kristoffer APPEL

A thesis submitted in fulfillment

of the requirements for the degree of

Master of Science (MSc.)

in the

Institute of Cognitive Science, University of Osnabrück



Declaration

I hereby certify that the work presented here is, to the best of my

knowledge and belief, original and the result of my own investigations,

except as acknowledged, and has not been submitted, either in part or

whole, for a degree at this or any other university.

Signed: Osnabrück, April 20th 2015

Johannes LEUGERING

ii



Abstract

This thesis investigates a probability theoretical approach to implementing homeo-

static intrinsic plasticity in a linear-non-linear-Poisson-spiking (LNP) neuron model.

A method is presented to derive a model neuron’s activation function from an

observed distribution of its membrane potential and a desired or observed distri-

bution of activation or spiking output. For the special case of exponential family

distributions of membrane potential and activation, some interesting properties

and a simple, biologically plausible mechanism for homeostatic intrinsic plasticity

are derived and analyzed. Links to dynamical systems and generalized linear models

are established. Numerical simulations are used to validate the most interesting

theoretical conclusions.
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“Adapt or perish, now as ever, is Nature’s inexorable imperative.”

– H. G. WELLS

The Mind at the End of its Tether (1945)

I want to thank my friends and colleagues, but foremost my parents and my official

as well as secret supervisors for providing a supportive, yet free environment that

allowed me to write this thesis.
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CHAPTER 1
Motivation and Introduction

A remarkable feature of biological systems is their ability to self-regulate, to sense

and correct errors in their own behaviour, and thus maintain stable operation

in changing environments, adapt to new environments and recover from dam-

age. This key observation lead Ashby (1954) to develop his view of the brain

in particular and cybernetics in general based on the concept of adaptation (or

homeostasis), a property he considered fundamental for living organisms as well

as many physical systems, which he defined as follows:

[A] form of behaviour is adaptive if it maintains the essential variables

[of the system] within physiological limits.1

He proposed that “unless the environment is wholly inactive, [the stabilizing

effect of adaptation] is necessary for survival”2 and concluded that “’adaptive’ be-

haviour is equivalent to the behaviour of a stable system”.3 This however supposes

the existence of adaptation mechanisms (active or passive) that are able to respond

to and counter-act undesirable changes in the system – “the constancy of some

variables may involve the vigorous activity of others”.4 From a modern perspective,

the idea of perfect stability of a system might seem inadequate for describing

systems subjected to as much noise as biological systems are, because it was formu-

lated in a cybernetics framework that studies dynamical systems, for which stable

and unstable (and thus desirable and undesirable) regimes are clear cut basins of

1 Ashby 1954, p. 57. 2 Ibid., p. 65. 3 Ibid., p. 64. 4 Ibid., p. 67.
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CHAPTER 1. MOTIVATION AND INTRODUCTION

attraction around well defined attractors. But the intriguing notion of a system

defind on a state space with desirable and undesirable regimes can be generalized

to a probability space with a density of desirability, which can be interpreted in

a probabilistic framework as the prior probability of a “healthy” system to find

itself at a certain point in the probability space. From this perspective, the system

then needs to maintain a certain stable probability distribution over its states in

response to its stochastic inputs in order to survive.

If cortical neurons are viewed as self-regulating systems in such a probabilistic

framework, then their remarkable ability to maintain desirable levels of activation

in spite of drastically changing distributions of synaptic inputs raises the question,

what biological processes might underly this adaptation. Many candidate mecha-

nisms for such homeostatic regulation have been suggested,5 but their theoretical

implications, minimal requirements and limits have not been conclusively dealt

with.

In particular, considering mechanisms of intrinsic plasticity (i.e. mechanisms

confined within the neuron), it’s an open question how much and what kind of

information about its surrounding is required for the neuron to be able to regulate

its own activity. Some suggested mechanisms use simultaneous observations of the

model neuron’s in- and output and apply numerical methods to find parameters

which minimize a loss function, that either measures the amount of information

transmitted by the neuron,6 or the deviation of the neuron’s actual distribution

of activity from a desired distribution.7 While these approaches can be used to

evaluate and optimize existing neuron models, they rely on information (tuples

of membrane potential and simultaneous activation) that may be more specific

than necessary8 and algorithms that are hard to motivate biologically9. They fail

to provide a satisfactory, abstract, minimal model that solves this problem in an

5 Turrigiano and Nelson 2000. 6 Joshi and Triesch 2009; Buesing and Maass 2010; Toyoizumi

et al. 2005; Tishby, Pereira, and Bialek 2000; Klampfl, Legenstein, and Maass 2009; Bell and

Sejnowski 1995; Stemmler and Koch 1999. 7 Joshi and Triesch 2009; Savin, Joshi, and Triesch

2010; Triesch 2007. 8 The desired result is the stable mapping from a probability distribution of

the membrane potential to a probability distribution of its activation, thus in principle un-timed

information about these two distributions might be sufficient. 9 In several of the references,

gradient descent rules are derived that result in fairly complex expressions, relating many variables

and parameters in non-linear ways.
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CHAPTER 1. MOTIVATION AND INTRODUCTION

optimal way.

This thesis follows a different approach by presupposing a (time-varying)

parametric distribution of membrane potential and activation and inferring a

thusly parameterized adaptive optimal neuron model from these distributions. The

result is a neuron model that exactly realizes the desired distribution of activation

and thus serves as the upper limit of what intrinsic plasticity could achieve. The

idea of such an optimal neuron model for some static probability distributions has

been implicit in e.g. (Triesch 2007) as a test-case against which to compare the

adapted neuron models and has been used to establish optimality of the encoding

of some biological neurons.10 Yet I am not aware of a fully developed theory that

generalizes this concept to arbitrary distributions and allows the resulting optimal

model to adapt to changing distributions.

This thesis attempts to provide such a framework in order to theoretically

address two principal questions:

1. (How) can the operation of a neuron be derived from measurements of the

statistical properties of its in- and output?

2. (How) can an intrinsic homeostatic mechanism be implemented that keeps

the output statistics in a “desirable” regime?

To this end, chapter 2 introduces the basic linear-non-linear-Poisson (LNP)

neuron model, some concepts from probability theory and how they can be used

to derive an optimal adaptive neuron model. In chapter 3, this general definition

of the adaptive neuron model is constrained to the class of exponential family

distributions and a simple, yet interesting, example neuron model is derived,

analyzed and discussed in more detail. Chapter 4 shows numerical results to

support the main conclusions of chapters 2 and 3. Finally, chapter 5 presents a

short summary of the thesis, relates it to other research and ends with suggested

directions for further research.

10 Laughlin 1981.
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CHAPTER 2
Theoretical Background

2.1 Linear-Nonlinear Point Process Neurons

This thesis focuses on neuron models of the linear-non-linear-point-process variety1,

where the neuron’s spiking output is modeled as a stochastic point process driven

by a time-varying activation. This activation at each point in time is modeled

by a linear transformation of the neuron’s inputs2 into what is interpreted as

the neuron’s membrane potential, followed by a non-linear transformation by the

neuron’s activation function3. The binary spiking events drawn from a time-varying

activation constitute a Poisson process, which is why these models are referred to

as linear-non-linear-Poisson-spiking neuron models (LNP models for short) from here

on. This class of neuron models can be derived as a statistical abstraction of more

physiologically motivated dynamical systems models such as the commonly used

(Non-Linear-)Integrate-and-Fire model.4

See figure 2.1.1 for an illustration of the different components of such a LNP

model.

As discussed in the following, LNP models exhibit very desirable properties for

1 See (Ostojic and Brunel 2011) for a motivation, derivation and comparison of such models

with more biologically inspired spiking neuron models. 2 The linear integration of inputs across

different synapses as well as filtering in time with a filter that models the synapses’ and membrane

potential’s temporal dynamics can be subsumed in this linear transformation. 3 The activation

function is also referred to as transfer function or (static) non-linearity 4 Ostojic and Brunel 2011.
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Figure 2.1.1: Clock-wise from the top left: Spike trains from presynaptic neurons
are linearly combined and filtered to yield the neuron’s membrane potential.
A non-linear activation function maps the membrane potential to the neuron’s
instantaneous activation (or rate). In discrete time, the instantaneous rate is
mapped to a spiking probability within one time-step. For very small time-steps,
this mapping approaches a linear function. Finally, a new spike-train is drawn
from the time-varying spiking probability distribution. Effects like refractoriness
can be included by adding a virtual feedback-connection that uses a different spike
response filter and contributes to the neuron’s membrane potential. The theoretical
results of this thesis mostly concern the mapping from membrane potentials to
activations highlighted in the right column of the above figure.
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SECTION 1. Linear-Nonlinear Point Process Neurons

statistical inference and have thus gained popularity in recent years, in particular

in the form of generalized linear models (GLMs) which have been proposed for

modeling neuronal spiking activity in a wide range of experimental setups.5

Mathematically, the LNP models used in this thesis can be summarized by

equations 2.1.1 to 2.1.4.

X j(t) =
T j∑

i=1

δ(t −τi, j) (2.1.1)

V (t) =

∫ t

0

η(τ)
∑

j

X j(t −τ)ω jdτ (2.1.2)

λ(t) = f (V (t)) (2.1.3)

P(τT0+1,0 ∈ [t; t +4t]) = 1− exp

 
−
∫ t+4t

t

λ(τ)dτ

!
(2.1.4)

In equation 2.1.1, X j denotes synapse j’s spiking output over time, which is a sum

of δ-pulses6 centered at the times τi, j where synapse j fires. The total number of

spikes emitted thus far by synapse j is denoted T j. The pre-synaptic spike trains X j

are scaled by the corresponding synaptic weightsω j, summed and filtered with the

(causal) filter η(t) to yield the function V (t), interpreted to represent the neuron’s

membrane potential at time t. The non-linear activation function f in equation

2.1.3 maps this membrane potential to the neuron’s instantaneous activation λ(t).
The neuron’s own spiking output (represented by the index j = 0) is generated

probabilistically by an inhomogeneous Poisson process with time-varying rate λ(t).
To this end, the probability of emitting at least one spike within the next time

interval of length 4t can be derived as a function of the total probability mass in

that interval.

5 Gerwinn, Macke, and Bethge 2010; Truccolo et al. 2005; Kass and Ventura 2001; Haslinger et al.

2012; Ostojic and Brunel 2011; Paninski 2004. 6 Strictly speaking, this makes X j(t) a distribution

rather than a function. However, this terminological inconsistency is resolved by the convolution in

equation 2.1.2 with a filter η(t), which results in a proper function V (t) nevertheless.
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CHAPTER 2. THEORETICAL BACKGROUND

In discrete time with T time-steps of size 4t, this can be rewritten as:

X ∈ {0,1}T×N (2.1.5)

X i, j = 1⇔∃k : τk, j ∈ [i4t; (i+ 1)4t] (2.1.6)

V = η ? Xω (2.1.7)

λi = f (Vi) (2.1.8)

Pi+1 = 1− exp
�−4t ·λi

�
(2.1.9)

Here, X can be defined as a binary matrix with columns representing pre-synaptic

spike trains. If 4t is chosen sufficiently small, each time-interval can contain at

most 1 spike due to refractoriness of the neuron, thus X i, j = 1 represents a spike

at synapse j and time-step i, whereas X i, j = 0 represents no spike. V , η, λ and P

are column vectors corresponding to the likewise named quantities for continuous

time. The “?” in equation 2.1.7 symbolizes discrete convolution. The probability of

the neuron to spike within time-step i+1 is then given by Pi+1, which is calculated

under the assumption of a constant rate λi throughout the ith time-interval of

length 4t.

In the scope of this thesis, such models are used for one compelling reason:

[They offer] a practical, broadly applicable solution to the computa-

tional problem of fitting potentially complex point process models for

neural spike trains by maximum likelihood [estimation].7

As discussed in section 3.3, the fact that maximum likelihood estimation is a

suitable method for fitting a LNP model’s parameters allows for the derivation of

an adaptive neuron model that achieves homeostasis by continuously estimating

the parameters of its input distribution.

However, a principal difference in the usage of LNP models, in particular GLMs,

in thesis thesis compared to how they are also used in the analysis of neural data

should be pointed out: While they can be used just as generic machine-learning

tools suitable for “the analysis of the simultaneous effects of extrinsic covariates”

on “concurrent ensemble spiking activity”,8 they are here viewed as statistical

simplifications of the actual mechanism underlying spike generation in neurons.
7 Truccolo et al. 2005. 8 Ibid.
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SECTION 2. Mapping Membrane Potentials to Activations

Thus less emphasis is placed on the computational power of such models, rather

than on their mathematical simplicity and utility as models of biological neurons.

2.2 Mapping Membrane Potentials to Activations

In the previous section, the mapping f : V → λ in equations 2.1.3 and 2.1.8

is left unspecified. Many activation functions have been proposed in different

contexts: from step functions9 or entire logical predicates10 in early perceptrons,

via sine,11 sigmoidal, conic parabolic and radial basis functions used in artificial

neural networks,12 to yet more general abstract classes13 and biologically inspired

functions.14 Often, the choice of an activation function is based on its mathematical

convenience15 and performance for computation16 or on simplifying assumptions

about the operation of the neuron and its parameters are then fitted to neural data

(see e.g.17).

In contrast to that, this section describes how the statistics of the neuron’s input

(membrane potential) and output (activation) alone (almost) uniquely determine

the neuron’s activation function, and how this insight can be used to construct an

adaptive neuron model.

2.2.1 Mappings from Arbitrary In- to Output Distributions

A neuron’s membrane potential, resulting from a bombardment of incoming spikes,

can be modeled as a stochastic process such as the commonly used Ornstein-

Uhlenbeck process.18 This implies that for any point in time, the neuron’s mem-

brane potential can be expressed as a random variable, the distribution of which

we refer to as the membrane potential or input distribution. The neuron’s activation,

a deterministic transformation of its stochastic input, is thus a random variable, as

well, the distribution of which we refer to as the activation or output distribution.

See figure 2.2.1 for an illustration of how different commonly used activation

9 Rosenblatt 1958. 10 Minsky and A. Papert 1969; McCulloch and Pitts 1943. 11 Sopena,

Romero, and Alquezar 1999. 12 Karlik and Olgac 2010. 13 DasGupta and Schnitger 1993.
14 Toyoizumi et al. 2005. 15 Sopena, Romero, and Alquezar 1999; Paninski 2004. 16 Karlik

and Olgac 2010. 17 Toyoizumi et al. 2005. 18 Shimokawa and Shinomoto 2009.
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CHAPTER 2. THEORETICAL BACKGROUND

functions can map the same normally distributed membrane potential to very

different distributions of activation.

Given an input and an output distribution, this section explains how the

neuron’s non-linear activation function can be determined. The motivation for this

approach, rather than using one of the many proposed activation functions and

fitting them to neural data, is three-fold: Since these distributions only need to be

observed, this might allow estimation of activation functions in vivo and could thus

supplant or augment similar techniques like white noise analysis,19 which require

actively injecting stochastic inputs into the neuron. Furthermore, since no precise

pairings (V (t),λ(t) = f (V (t))) of input and corresponding output need to be

known, recordings from different neurons could be efficiently pooled to estimate

the neurons’ input and output distributions and thus determine their expected

activation functions. This also alleviates the problem that neural processing might

not be instantaneous, because in- and output distributions are independent of any

temporal structures.

We formalize this idea in theorem 5 after stating a few preliminary definitions

and theorems. The proofs of all theorems presented in this section and lemmas

required in the process can be found in Appendix A.

Definition 1 (Space of Cumulative Distribution Functions). We define Π to be the

space of cumulative distribution functions (CDFs), i.e. the space of non-decreasing,

right-continuous functions F : R → (0,1) with limits limx→−∞ F(x) = 0 and

limx→∞ F(x) = 1.

To allow general statements about continuous as well as non-continuous ran-

dom variables, a generalized inverse20 needs to be defined that extends the concept

of a function inverse to cumulative distribution functions, which in general are

not invertible in the strict sense. Using specific properties of the space Π, this

allows defining a quantile function for arbitrary random variables which can be

considered an inverse function in a weaker sense.

19 Chichilnisky 2001. 20 Embrechts and Hofert 2013.
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Figure 2.2.1: A random membrane potential with normal distribution is mapped
onto an activation variable via 3 different activation functions. The resulting
distributions of activation are qualitatively different. Solid lines show theoretically
derived distributions on top of histograms for 5000 random samples and the
respective function values of the activation functions. The activation functions
used are a simple exponential function as used later in this thesis, the logistic
function commonly used in artificial neural networks and the neuron model used
by Toyoizumi et al. (2005), all using arbitrarily chosen parameters to illustrate the
variability of resulting activation distributions.
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CHAPTER 2. THEORETICAL BACKGROUND

Definition 2 (Generalized Inverse). Let f ∈ Π be a cumulative distribution func-

tion. We define the generalized inverse of f by the function

g : (0, 1)→ R, y �min{x ∈ R| f (x)≥ y}

The minimum in the above expression is well defined, since f is by definition

right-continuous and thus f (inf{x ∈ R| f (x) ≥ y}) = f (y)⇒ inf{x ∈ R| f (x) ≥
y} ∈ {x ∈ R| f (x)≥ y}, i.e. min{x ∈ R| f (x)≥ y}= inf{x ∈ R| f (x)≥ y}.

The generalized inverse G of the cumulative distribution function F of the

random variable X is also called the probability distribution’s quantile function,

because for continuous random variables it allows defining the p-quantile, i.e. the

interval (−∞, G(p)] = (−∞, x] ⊂ R for which p = P(X ∈ (−∞, x]) = F(x) =
F(G(p)). This equivalence also illustrates that for continuous random variables,

the generalized inverse is identical to F−1, the standard inverse21.

Using these definitions, two well known theorems from probability theory, the

Probability Integral Transform and the Inverse Probability Integral Transform, can

be introduced.22 They state that:

Theorem 3 (Probability Integral Transform). Let X1 be a continuous random vari-

able with cumulative distribution function F1 ∈ Π. Then the random variable

U := F1(X1) has uniform distribution on the open interval (0, 1).

Theorem 4 (Inverse Probability Integral Transform). Let U be a random variable

with uniform distribution on the open interval (0, 1) and let F2 ∈ Π be a cumulative

distribution function. Let G2 be the generalized inverse of F2 as defined in definition 2.

Then the random variable X2 := G2(U) has the cumulative distribution function F2.

21 For non-continuous random variables, the CDF can be locally constant and may thus not be

invertible in the traditional sense. 22 Angus 1994.
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SECTION 2. Mapping Membrane Potentials to Activations

With the two theorems stated above, the main corollary of this section can be

constructed:

Theorem 5 (Transfer Function Theorem). Let X1 be a continuous random variable

with cumulative distribution function F1 ∈ Π and let F2 ∈ Π be a cumulative dis-

tribution function. Let G2 be the generalized inverse of F2 as defined in definition

2.

Then the random variable X2 := τ(X1) with τ := G2 ◦ F1 has the cumulative

distribution function F2. The function τ is called transfer function from X1 to X2

and is non-decreasing and left-continuous.

This theorem has the strong implication, that for any continuous random

variable, a well defined function can be found that maps it onto a random variable

with arbitrarily defined probability distribution. Since this theorem is used below

to derive a neuron’s activation function given its in- and desired output distribution,

the question arises, whether the function τ defined in theorem 5 is the only sensible

choice or just one among many. The following theorem addresses this question.

Theorem 6 (Uniqueness of the Transfer Function). Let X1, F1, F2 and G2 be as

defined in theorem 5. Let τ̃ : R→ R be a non-decreasing, left-continuous function

such that the random variable τ̃(X1) has the cumulative distribution function F2.

Then τ̃= τ= G2 ◦ F1.

Thus τ is in fact the only reasonable choice!23 We have thus established a

method to uniquely recover from just the cumulative distribution functions of two

random variables X1 and X2 := f (X1), where f is a non-decreasing left-continuous

23 Monotonicity is a reasonable requirement for neuronal activation functions. The constraint of

left-continuity could be dropped, allowing the function values of τ to be chosen more freely on the

set of discontinuities of τ. Relinquishing left-continuity for this seems unjustified though, because

any transfer function would then still have to agree with τ almost everywhere, thus gaining little

additional freedom at the expense of mathematical simplicity.

13



CHAPTER 2. THEORETICAL BACKGROUND

function, the transformation f between the two. Since this was derived in a very

general way, allowing any continuous distribution for X1 and any (continuous,

discrete or neither) probability distribution for X2, the following sections present a

few examples to illustrate the utility of this result.

For proofs of the theorems above, see Appendix A.

2.3 Intrinsic Plasticity

Theorem 5 from the previous section provides a method to determine, given

two random variables X1 and X2 with cumulative distribution functions F1 and F2,

respectively, a function τ that maps the random variable X1 onto a random variable

with the same distribution as X2. This function τ is defined by just the composition

of the (generalized) inverse of F2 with F1 and can thus be calculated as soon as

F1 and F2 are known. In the context of LNP-neurons, this can be used to define

the activation function f of the neuron after determining the distribution of its

membrane potential (F1) and its activation (F2). This could provide an improved

way of determining neuronal activation functions from biological measurements:

It is non-parametric in so far, as the activation function is parameterized only by

parameters of the respective distributions F1 and F2, i.e. if F1 and F2 are fixed, the

activation function has no more free parameters. It should prove simpler than

methods that rely on simultaneous recordings from a neuron’s dendrite and axon:

Since only the distribution of membrane potential and activation need to be known,

rather than tuples of membrane potential and activation at fixed points in time, the

recordings need not be simultaneous and delay-effects induced by the biological

processing in the neuron can be neglected. Furthermore, no regression-like

techniques need to be used to fit a deterministic activation function through noisy

data points of membrane potential and activation, since the stochasticity of both

variables is adequately represented in their probability distributions, which then

uniquely determine the activation function. Available literature can be surveyed

for suggestions of membrane potential distributions as well as distributions of

firing rates, and the implied activation function mapping one onto the other can

be compared to contemporary neuron models (see section 3.3 for an extended

14



SECTION 4. Intrinsic Plasticity

example).

In addition to that, since the activation function is parameterized by the

parameters of the in- and output distribution, any change in a parameter of

the input distribution can be compensated by also changing the corresponding

parameter of the activation function:

Suppose the neuron’s membrane potential V is a random variable with cumula-

tive distribution function F1(V ;θ1) with the parameter vector θ1 and its activation

λ is a random variable with cumulative distribution function F2(λ;θ2) with the

parameter vector θ2 and the generalized inverse G2. If the neuron’s activation func-

tion is defined as f (V ;θ1,θ2) := G2(F1(V ;θ1);θ2), then it is fully parameterized by

θ1 and θ2. Suppose now a change occurs in the probability distribution of V and θ1

is updated to θ̃1. Then the random variable f (V ; θ̃1,θ2) again has the cumulative

distribution function F2(λ;θ2). Thus, in order to maintain the distribution F2 for

its activation, the neuron has to adapt the parameters θ1 of its activation function

to the new parameters θ̃1. Since these parameters coincide with the parameters of

the input distribution itself, maintaining a constant output distribution becomes a

question of maintaining close approximations of the parameters of the neuron’s

input distribution.

By keeping the neuron’s own output in a desirable regime (one could view the

enforced output distribution as providing a measure of desirability of the potential

outputs), this method implements the basic idea of homeostatic intrinsic plasticity

as outlined in chapter 1. For the convenient special case of exponential family

input distributions, these ideas are used in chapter 3 to formalize very simple

homeostatic neuron models which are later numerically evaluated in chapter 4.

A second kind of neuronal plasticity could be characterized by changing the

parameter vector θ2, which allows the neuron to change its output distribution

– a behavior that could be triggered by external effects such as LFPs or neuro-

modulators and could be used to selectively (in)activate neurons or change their

mode of operation (see chapter 5 for a few suggestions for how this concept could

be utilized).

15



CHAPTER 2. THEORETICAL BACKGROUND

2.4 Stochastic Spike Generation

In sections 2.2 and 2.3, a method is presented to define the adaptive activation

function f which has been left unspecified in equation 2.1.3 for continuous time

and 2.1.8 for discretized time. This completes the specification of the determin-

istic part of the general LNP model used in this thesis, which leaves only the

stochastically spiking point process to be discussed in this section.

2.4.1 Inverse Sampling

If a neuron’s spiking output is modeled as a Poisson process with time-varying

rate λ(t), the probability p of the neuron to spike within a time-interval of fixed

length 4t at time t is given by equation 2.1.4 as p = 1− exp(−
∫ t+4t

t
λ(τ)dτ)24.

Assuming that λ changes on a time-scale much slower than4t, the integral can be

approximated by
∫4t

0
λ(t+τ)dτ≈

∫4t

0
λ(t)dτ = λ(t)4t. With this simplification,

the spiking probability becomes p = 1− exp(−4tλ(0)) as used in equation 2.1.9

for discrete time.

Given this probability, the neurons spiking output for this one time interval

of length 4t can be represented as a Bernoulli random variable, taking on a

value of 1 (which corresponds to a spiking event within said interval) or 0 (which

corresponds to no spike) with probabilities p and 1− p, respectively. A random

variable like this can easily be generated form a uniform random variable U (noise)

by using the inverse probability integral transform (see theorem 4) derived in

section 2.2:

The CDF FBern and its generalized inverse GBern of the Bernoulli distribution

24 Temporal structure of spiking output such as refractoriness is disregarded here.
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SECTION 4. Stochastic Spike Generation

with parameter p are defined as:

FBern(x |p) =





0 for x ≤ 0

1− p for x ∈ [0,1)

1 for x ≥ 1

(2.4.1)

GBern(x |p) =min{s ∈ R|FBern(s|p)≥ X } (2.4.2)

=





0 for y ∈ (0,1− p)

1 for y ∈ [1− p, 1)
(2.4.3)

Theorem 4 implies that X defined as follows has the CDF FBern with parameter p:

X := GBern(U |p) (2.4.4)

= GBern(U |1− exp(−4tλ(t))) (2.4.5)

=





0 for y ∈ (0, exp(−4tλ(t)))

1 for y ∈ [exp(−4tλ(t)), 1)
(2.4.6)

However, this expression depends on the time-varying activation λ(t) =
f (V (t)) which involves the neuron’s activation function f that is defined in terms

of the generalized inverse of the neurons activation distribution and might thus be

difficult to compute. An alternative representation of X , which can be derived by

equivalently transforming the condition y ∈ (0, exp(−4tλ(t))) in equation 2.4.6,

overcomes this problem:

17
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y ∈ (0, exp(−4tλ(t))) (2.4.7)

⇔ − log(y)
4t

∈ [λ(t),∞) (2.4.8)

⇔ − log(y)
4t

∈ [G2(F1(V (t))),∞) (2.4.9)

⇔ − log(y)
4t

∈ [min{s ∈ R|F2(s)≥ F1(V (t))},∞) (2.4.10)

⇔ − log(y)
4t

∈ {s ∈ R|F2(s)≥ F1(V (t))} (2.4.11)

⇔ F1(V (t))≤ F2

�− log(y)
4t

�
(2.4.12)

Substituting the expression in equation 2.4.12 back into equation 2.4.6 for

the equivalent expression in equation 2.4.7 yields an alternative definition of the

spiking output X that can be used to sample spikes from the membrane potential

without the need to calculate or estimate the (generalized) inverse of the neuron’s

distribution of activations:

X :=
�

F1(V (t))≤ F2

�− log(y)
4t

��
(2.4.13)

If F1 is continuous, this can be further transformed:

X :=
�

V (t)≤ F−1
1

�
F2

�− log(y)
4t

���
(2.4.14)

This demonstrates the equivalence of choosing an arbitrary activation function

and subsequently sampling spikes to using a simple step-function with (suitably

distributed) random thresholds. Such random thresholds have been used in

conjunction with integrate-and-fire based neuron models,25 for which random

thresholds can be introduced very naturally and temporal dynamics can more

easily be incorporated than in LNP models (see section 2.4.4).

Since for equation 2.4.13 only the cumulative distribution functions need to be
25 Lazar, Pnevmatikakis, and Zhou 2010; Gestri, Mastebroek, and Zaagman 1980; Reich et al.

1997.
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known, it might prove simpler to implement than equations 2.4.6 and 2.4.14 for

commonly used distribution, which are often defined by their CDFs but need not

have simple closed form quantile functions (i.e. generalized inverses).

This completes the specification of the basic LNP model as outlined in equations

2.1.1 to 2.1.9. The following section discusses, how this LNP models can be

extended to cope with violations of the assumption of Poisson-spiking, such as

temporal structure in the spike generation process resulting from refractoriness.

2.4.2 Incorporating refractoriness into the Neuron Model

A limitation of the LNP model described thus far is, that it assumes strictly Poisson

spike generation, i.e. by a stochastic process that is memory-less. This however

neglects the ample evidence that effects such as neuronal refractoriness are not just

slight deviations from an ideal process due to physical limitations of the neuron

but may in fact happen on a time-scale that is functionally relevant.

For example, an early study of locust neurons26 quantifies the effect of relative

changes in firing thresholds of the observed neurons as a function of time since

the preceding spike. A sharp increase directly after the spike can be observed,

followed by a roughly exponential decay back to the original threshold. See figure

2.4.1 for a comparison of the original data with a fitted exponential decay model.

The observed decay time constants of ≈ 15ms are considerably longer than what

could be expressed by absolute refractory periods alone.

The study concludes:

The threshold recovery after impulse propagation in locust peripheral

motor axons to flight muscles is described. The refractoriness is large

enough to have functional significance for at least 10 msec, and may be

detected after 50-100 msec. The refractoriness to successive impulses

accumulates.27

Further biological studies indicate that refractoriness of neurons might play an

important role in explaining the temporal precision of firing in biological neurons

which simple LNP neuron models cannot reproduce.28

26 Wilson 1964. 27 Ibid. 28 Berry and Meister 1998.
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Figure 2.4.1: After inducing a spike in locust axons, relative changes in the
threshold are measured as a function of time. Solid lines show data extracted
from figure 1 of the original study by Wilson (1964) for two conditions (recorded
in a fresh and an old preparation). Dashed lines show exponential functions
fitted through the data-points using a generalized linear model with a log-link
function (thus assuming Poisson-noise in the measurements). Although the fit
is not very precise, it shows a roughly exponential decay towards 100% with a
fixed time constant of 14.27ms (during fitting, both exponentials share the same
time-constant and vary only in scaling).
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SECTION 4. Stochastic Spike Generation

Due to these insights, a simple extension to the LNP framework has been

suggested, where spike generation is modeled as an inhomogeneous Markov Interval

Process (IMI-process),29 rather than a Poisson-process. To this end, the neuron’s

activation variable λ(t) is multiplied by a recovery variable R(t−τ∗) which depends

on the time since the neuron’s last spike τ∗ and converges to 1 as (t −τ∗)→∞.

Refractoriness accumulated due to multiple previous spikes could similarly be

included by multiplying with the product of the effects from previous spikes∏
i∈N R(t −τi) instead.

In terms of our LNP neuron model, this implies that equation 2.1.3 is replaced

by equation 2.4.15:

λ(t) = f (V (t)) ·
∏
i=1

R(t −τi,0) (2.4.15)

Here, R is the recovery kernel that models the recovery after each spike, the τi,0

are spike times of the neuron itself and X0 is its previous spike train.

However, this causes an obvious problem as it changes the distribution of the

neuron’s activation λ. In order to stay consistent with the interpretation that the

activation function f is chosen to map the membrane potential to an activation

with a given distribution, the effect of modulating the activation with a recovery

variable needs to be compensated for.

One method, to maintain at least the expected value of the distribution of

activation, could be to compensate the overall decrease in firing probability due to

refractoriness by up-scaling the activation of the neuron accordingly. Although this

fails to capture the different effects that refractoriness has for different levels of

activation (due to temporal correlations, a neuron in a highly activated state has

more likely spiked recently and is thus on average subject to stronger refractory

effects), this might provide a reasonable approximation – in particular when firing

rates are low on average. To this end, the expected value of the (cumulated)

recovery variable, Eδ[R(δ)] needs to be calculated from the distribution of inter-

spike-intervals (ISIs) δ. This could be done analytically for a given probability

distribution of δ or numerically from a set of observed spike times.

A different approach is to use the fact that the activation function f is non-

29 Berry and Meister 1998; Kass and Ventura 2001.
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decreasing and non-negative, typically with limv→−∞ f (v) = 0, and introduce the

recovery variable as an additive term of the activation function’s input. Such

feed-back of a neuron’s output to its own input has also been used with dynamical

systems models to model spike responses and after-effects.30 After each of the

neuron’s spikes the effective input Ṽ (t) = V (t)+
∑

i R(t−τi) can be pulled towards

large negative values, resulting in an activation λ̃(t) = f (V (t) +
∑

i R(t − τi))
close to zero. While this approach is here not yet as well motivated as the previous

suggestion, it offers a significant improvement: The influence of refractoriness,

which is now incorporated as an additional summand in the neurons effective

membrane potential Ṽ like an additional inhibitory feed-back connection, is now

compensated for by the intrinsic plasticity mechanism of the neuron itself.

For the special case of exponential family neuron models, these two approaches

are shown to be compatible in chapter 3, resulting in a well motivated and conve-

nient neuron model that incorporates auto-history dependence.

2.4.3 Fitting the Activation Function from an ISI distribution

The (extended) LNP model allows the extraction of a neuron’s activation function

from an observed distribution of its membrane potential and activation over time.

However, the activation variable itself, introduced as a hidden variable underlying

the spike generation process, cannot be observed itself in biological neurons.

This section addresses that problem and offers a crude numerical way of fitting

parameters of the activation distribution to raw spiking data, in case the activation

variable itself is not observable.

This problem is typically avoided when fitting rate coding neuron models by

averaging their spiking responses to identical stimuli over multiple trials into a

so called peri-stimulus time histogram (PSTH), and subsequently smoothing the

PSTH using techniques such as generalized linear models (GLMs; see section 3.3.5),

kernel density estimation, filtering, spline fitting or gaussian process regression31 to

get a slow varying estimate of the neuron’s activation. These mechanisms however

mostly rely on further assumptions about e.g. the smoothness of the neuron’s

30 Keat et al. 2001; Kistler, Gerstner, and Hemmen 1997; Gerstner 1995. 31 Behseta et al. 2007;

Cunningham et al. 2008.
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activation, which is reasonable as long as the stimulus injected into the neuron

can be controlled. For passive in-vivo recordings, a PSTH cannot be created and

the smoothness of the neuron’s activation over time might not be known. Some

sophisticated numerical methods to address the problem have been suggested,32

but here, as a proof of concept, only a basic brute-force maximum likelihood

estimation (MLE) approach to recovering the distribution of activation from a

distribution of ISIs is presented.

The neuron’s distribution of ISIs τ depends on the distribution of the neuron’s

activation λ via the spike generation mechanism described above and can be

analytically derived once the activation is known. The distribution of λ is param-

eterized by an unknown parameter vector θ 33 that should be recovered. Using

the Bayes theorem, the posterior distribution P(θ |τ) can be derived from known

quantities:

P(θ |τ)∝ P(τ|θ) =
∫ ∞

0

P(τ,λ|θ)dλ=
∫ ∞

0

P(τ|λ)P(λ|θ)dλ (2.4.16)

Here, P(τ|λ) represents the distribution of ISIs given a rate λ and P(λ|θ) is the

distribution of λ with unknown parameters θ . Marginalizing out the activation

λ leaves as the right hand side only the likelihood P(τ|θ), proportional to the

posterior P(θ |τ) which can be maximized w.r.t. the parameters θ , thus giving

a ML estimate θ̂ . Maximizing this integral expression may prove difficult, but

section 4.3 presents an example to demonstrate that this brute-force approach is

in principle capable of recovering parameters of a simulated neuron’s distribution

of activation.

2.4.4 Relation to Integrate-and-Fire-type Models

The LNP model described so far, if auto-history effects are not included, is a

memory-less point process. All the temporal dynamics concerning the integration

of inputs that is characteristic for biological neurons has so far been modeled by a

single filter η(t) in equation 2.1.2. If η is chosen to include the synaptic response
32 Cunningham et al. 2008. 33 The basic shape of the distribution of λ is assumed to be known.

Otherwise, parametric methods of approximating arbitrary distributions functions could be used

here.
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to a spike (transmitter release, re-uptake etc.) as well as the response of the

membrane potential to the presence of neurotransmitters (leaky integration), the

filtering can be split into two stages: given two filters ηS and ηM , that model the

impulse response of the synapse and the membrane potential, respectively, then due

to associativity of the convolution operation, the filter η(t) :=
∫ t

0
ηM(t−τ)ηS(τ)dτ

models the combined response as it would result from filtering a spike-train with

ηS to determine neurotransmitter concentration and then filtering it with ηM to

model the leaky integration of the resulting input in the membrane potential.

As shown below, an appropriate choice of ηM allows our model to capture

the same dynamic effects as the commonly used (nonlinear) integrate-and-fire

(IF, also called integrate-to-threshold) neuron model. This provides an intuitive

way to relate the LNP model defined above to the more biologically inspired

integrate-and-fire model with random thresholds:34

Suppose the filter η is the convolution of two components, a truly synaptic

filter ηS and an exponential membrane potential filter ηM defined as follows:

ηM(t) :=





0 if t < 0

αM exp
�−αM t

�
otherwise

(2.4.17)

Here 1
αM

is the membrane time-constant of the neuron. A new variable I(t) is

introduced to capture the cumulated synaptic responses resulting from pre-synaptic

spikes.

If we define the set T := {( j, i) ∈ N2|τ j,i < t} of all the indices of pre-synaptic

spikes fired before t, then the filter η(t), the membrane potential V (t) from

34 Gestri, Mastebroek, and Zaagman 1980; Reich et al. 1997.
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equation 2.1.2 and the post-synaptic input I(t) can be written as:

η(t) =

∫ t

0

ηM(t −τ)ηS(τ)dτ (2.4.18)

I(t) =
∑
( j,i)∈T

ω jηS(t −τ j,i) (2.4.19)

V (t) =
∑
( j,i)∈T

ω jη(t −τ j,i) (2.4.20)

Using differentiation under the integral sign to calculate the derivative with

respect to time, the membrane potential V (t) can be expressed as a simple differ-

ential equation of first order:

dη(t)
dt

= ηS(t)ηM(0) +

∫ t

0

η′M(t −τ)ηS(τ)dτ (2.4.21)

= αMηS(t)−αM

∫ t

0

ηM(t −τ)ηS(τ)dτ (2.4.22)

= αM
�
ηS(t)−η(t)

�
(2.4.23)

1

αM

dV (t)
dt

=
1

αM

∑
( j,i)∈T

ω j

d

dt
η(t −τ j,i) (2.4.24)

=
∑
( j,i)∈T

ω jηS(t −τ j,i)−
∑
( j,i)∈T

ω jη(t −τ j,i) (2.4.25)

=−V (t) + I(t) (2.4.26)

Equation 2.4.26 is the well known expression of the integrate-and-fire neuron

model35 with resting potential V0 = 0, driven by the synaptic input variable I(t).
Thus given an appropriately chosen filter η, the membrane potential of the LNP

model presented here is equivalent to that of an integrate and fire neuron.

Assuming a continuous probability distribution with CDF F1 for the membrane

potential V , equation 2.4.14 can thus be used to generate spikes according to some

target distribution with CDF F2, resulting in the simple IF model with random

35 Burkitt 2006a; Burkitt 2006b.
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thresholds described by equations 2.4.27 to 2.4.28:

τM

d

dt
V (t) =−V (t) + I(t) (2.4.27)

if V (t)≥ θ : spike, θ ← F−1(F2(
− log(U)
4t

), t ← t +4t (2.4.28)

Here, for consistency with the notation used elsewhere, the membrane time

constant is called τM := 1
αM

. Line 2.4.28 is meant to summarize that when the

membrane potential crosses the threshold, a spike is fired, a new threshold is

drawn from a transformation of the uniform random variable U and simulation is

paused for a time interval of length 4t, the absolute refractory period.

Using the intrinsic plasticity mechanism outlined in section 2.3, this allows

for the construction of an adaptive dynamical systems model that maintains a

fixed distribution of activations! See section 3.3.3 for an example. A numerical

simulation of such a neuron model can be found in section 4.2
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CHAPTER 3
Exponential Family Neuron Models

In chapter 2, a general statistical approach is presented to determine a neuron’s

activation function given it’s observed or desired membrane potential and activa-

tion distribution. This chapter refines these results for a particularly convenient

class of probability distributions, members of an exponential family (EF), for which

adaptive neuron models can be derived very naturally. A particular example of a

neuron model that maps normally distributed membrane potentials to log-normally

distributed activations is discussed in detail.

3.1 Exponential Families

A so called exponential family (or class) of distributions can be defined in various

ways, using different base measures, non-canonical forms or factorizing terms in

different ways.1 Here, densities are always assumed to be in their canonical form,

simplifying the definition to a form consistent with, but more informal than Canu

and Smola (2006)2 as well as Nielsen and Garcia (2009):

1 Charnes, Frome, and Yu 1976; Canu and Smola 2006; Geyer 1990; Nielsen and Garcia 2009;

Dobson 2002; McCullagh and Nelder 1989. 2 Canu and Smola (2006) measure w.r.t. to the

distribution’s base measure and can thus drop it from the definition of the density.
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Definition 7 (Exponential Families). A family of probability distributions with

probability density (or mass) functions f (x |θ) parameterized by the (bounded)

vector θ , is called an exponential family (in canonical form), if and only if the

densities can be expressed as:

f (x |θ) = exp(〈φ(x),θ 〉 − g(θ) + h(x))

Here 〈·, ·〉 denotes the standard scalar product, φ(x) : Ω→ RN is referred to as

the sufficient statistics of the distribution, θ ∈ RN is the natural parameter of the

distribution, g(θ) : RN → R is the log-partition function and h(x) : R→ R is the

distribution’s base measure. The scalar η := 〈φ(x),θ 〉 is referred to as the linear

predictor of the distribution.

Remark. Here, only the standard scalar product 〈·, ·〉 on RN of the finite dimensional

vector of sufficient statistics with the vector of natural parameters is considered, but

in principle the concept of linearity of the predictor η can be extended to bilinear

kernels h(·, ·) on Reproducing Kernel Hilbert Spaces3 for even greater generality.

Remark. In order for the function f in definition 7 to be a proper probability density,

it must be normalized to 1. Thus g(θ ) = log
�∫
Ω

exp(〈φ(x),θ 〉+ h(x))dx
�

, which

implies that g must be convex.4

The class of such distribution contains a surprising number of commonly used

probability distributions,5 as a partial list by Nielsen and Garcia (2009) shows:

Gaussian or normal (generic, isotropic Gaussian, diagonal Gaussian,

rectified Gaussian or Wald distributions, log-normal), Poisson, Bernoulli,

binomial, multinomial (trinomial, Hardy-Weinberg distribution), Lapla-

cian, Gamma (including the chi-squared), Beta, exponential, Wishart,

Dirichlet, Rayleigh, probability simplex, negative binomial distribu-

tion, Weibull, Fisher-von Mises, Pareto distributions, skew logistic,

hyperbolic secant, negative binomial, etc.6

3 Canu and Smola 2006. 4 Ibid. 5 Brown 1986; McCullagh and Nelder 1989; Dobson 2002;

Canu and Smola 2006. 6 Nielsen and Garcia 2009.
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A very convenient property of exponential family distributions is the fact, that

maximum likelihood estimation of their parameters given a dataset is possible in a

simple closed form given only the empirical mean of the sufficient statistics on the

dataset. This relies on the fact that the log-likelihood function is concave7 and the

log-partition function g convex.8

Suppose a dataset X := {x1, . . . , xM} of i.d.d. values from an exponential family

distribution with density f is given, and the ML estimator of the distribution’s

natural parameters θ is to be determined. The joint likelihoodL of the parameters

θ given the dataset X is then proportional to the expression in equation 3.1.4:

L (θ |X ) = P(X |θ) =
M∏

i=1

f (x i|θ) (3.1.1)

=
M∏

i=1

exp
�〈φ(x i),θ 〉 − g(θ) + h(x i)

�
(3.1.2)

= exp

 *
M∑

i=1

φ(x i),θ

+
−M g(θ) +

 
M∑

i=1

h(x i)

!!
(3.1.3)

∝ exp

 *
M∑

i=1

φ(x i),θ

+
−M g(θ)

!
(3.1.4)

Using the standard ML estimation procedure of setting the derivative of the joint

log-likelihood with respect to θ to 0 and solving for θ , we determine:

d logL (θ |X )
dθ j

=
d

dθ j

 *
M∑

i=1

φ(x i),θ

+
−M g(θ)

!
(3.1.5)

=
M∑

i=1

φ j(x i)−M
d

dθ j
g(θ)

!
= 0 (3.1.6)

⇔ d

dθ̂ j

g(θ̂) =
1

M

M∑
i=1

φ j(x i) = EX [φ j(X )] (3.1.7)

⇔∇g(θ̂) = EX [φ(X )] (3.1.8)

Solving equation for θ̂ yields the maximum likelihood estimator of the parameters

for the given dataset X . The fact that the ML estimate depends only on the
7 Geyer 1990. 8 Canu and Smola 2006.
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(empirical) expectation EX [φ(X )] is the reason for calling φ the sufficient statistics

of the distribution: the expected value of the sufficient statistics fully characterizes

the corresponding probability distribution.

3.2 Adaptive Mapping between Exponential Families

3.2.1 Online Parameter Estimates with Conjugate Priors

If not a whole dataset X is observed simultaneously but instead continuously

sampled one value at a time (and EX[φ(X )] can thus not be calculated at once),

Bayesian sequential updates can be used to derive a running ML estimate of the

parameters given the data points seen so far. To this end, we use the definition of

the conjugate prior by Hogg, McKean, and Craig (2005):

Definition 8 (Conjugate Priors). A class of prior pdfs for the family of distributions

with pdfs f (x |θ),θ ∈ Ω is said to define a conjugate family of distributions if the

posterior pdf of the parameter is in the same family of distributions as the prior.

In other words, the conjugate prior of an exponential family with a PDF as in

definition 7 takes the same form as the joint likelihood for a dataset consisting of

M0 virtual observations Y := {y1, . . . , yM0
} with µ0 := 1

M0

∑M0

i=1φ(yi) (cf. Nielsen

and Garcia (2009)):

p(θ |Y ) = p(θ |µ0)∝ exp

 *
M0∑
i=1

φ(yi),θ

+
−M0 g(θ)

!
(3.2.1)

= exp(〈M0µ0,θ 〉 −M0 g(θ)) (3.2.2)

Using this prior, that corresponds to M0 virtual observations of the sufficient

statistics with the sample mean µ0, the posterior probability of θ after seeing a

single data point x is proportional to the expression in equation 3.2.6:
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f (θ |x ,µ0)∝ f (x |θ)p(θ |µ0) (3.2.3)

∝ exp
�〈φ(x),θ 〉 − g(θ)

�
exp
�〈M0µ0,θ 〉 −M0 g(θ)

�
(3.2.4)

= exp
�〈φ(x) +M0µ0,θ 〉 − (1+M0)g(θ)

�
(3.2.5)

= exp
�〈M1µ1,θ 〉 −M1 g(θ)

�
(3.2.6)

where : M1 := M0+ 1; yM1
:= x; µ1 :=

1

M1

M1∑
i=1

φ(yi) (3.2.7)

The posterior has the same form as the expression in 3.2.6 and the prior in 3.2.2,

which is thus shown to be a conjugate prior of the distribution.

Since prior and posterior come from the same family of distributions, only with

different parameters, it is possible to use the resulting posterior as a prior when

adding a new data point, and to continue doing so inductively. This allows us

to define the posterior after observing the data points Xn := {x i ∈ X |1 ≤ i ≤ n}
recursively for n≥ 1:

f (θ |Xn,µn)∝ exp
�〈Mnµn,θ 〉 −Mn g(θ)

�
(3.2.8)

where : Mn := Mn−1+ 1; µn :=
1

Mn
φ(x) + (1− 1

Mn
)µn−1 (3.2.9)

For M0 = 0, the posterior f (θ |Xn,µn) is identical to the joint likelihood of Xn as

defined in equation 3.1.4 and µn corresponds to the sample mean of the sufficient

statistics on the sample Xn. As to be expected, estimates µn converge to E[φ(X )]
as the number of samples n goes to infinity due to the law of large numbers,9 since

with an increasing n, the influence of the prior (or any individual data point)

decays with O (n−1).

Since the ML estimator for the parameter vector θ is implicitly defined by equa-

tion 3.1.8 as the vector θ̂ for which ∇g(θ̂) = EX[φ(X )] and µn = EXn
[φ(X )] ≈

EX[φ(X )], a running maximum likelihood estimate θ̂n can be defined as the so-

lution θ̂n of ∇g(θ̂n) = µn. If the (component-wise) inverse of the gradient of g

exists and is called γ, then this can be expressed as θ̂n = γ(µn).

9 Hogg, McKean, and Craig 2005.
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If we want the estimation to not converge to some fixed value, but instead

want all previously seen data (regardless of how much that might have been) to

serve as a prior with a fixed weight, then the diminishing weight 1
Mn

in line 3.2.9

can be replaced by the constant weight α, which yields µ̃n := αφ(x)+(1−α)µn−1.

If this exponentially weighted running estimate of the sufficient statistics is used

to calculate a “running ML estimate” θ̂(t), then this corresponds, in continuous

time, to the following differential equation with time-constant 1
α
:

1

α

dµ̃(t)
dt

=−µ̃(t) +φ(x(t)) (3.2.10)

θ̂(t) = γ(µ̃(t)) (3.2.11)

3.2.2 Sensitivity to Parameter Estimates

We now assume that a neuron, as defined in chapter 2, has a membrane potential

that is distributed according to some continuous member distribution of an expo-

nential family and a continuous desired distribution of activation. Neither of this

appears to be a strong concession. Since the true parameters underlying the mem-

brane potential distribution are unknown a priori and the running ML estimate

defined above only approximates the true maximum likelihood estimators, a first

interesting thing to analyze is how closely the neuron’s distribution of activation

matches the desired distribution.

Since both membrane potential distribution and desired activation distribution

are assumed to be continuous, the corresponding cumulative distribution functions

F1(V |θ1) and F2(λ|θ2) are strictly monotonically increasing, thus the neuron’s

activation function f as well as its inverse g are well defined and monotonically

increasing:

f (v;θ1,θ2) = (F
−1
2 ◦ F1)(v;θ1,θ2) (3.2.12)

g(λ;θ1,θ2) = f −1(λ;θ1,θ2) = (F
−1
1 ◦ F2)(λ;θ1,θ2). (3.2.13)

Let the neuron’s true distribution of membrane potentials V be of the exponen-
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tial family form:

f1(v|θ1) = exp(〈φ1(v),θ1〉 − g1(θ1) + h1(v)) (3.2.14)

If the maximum likelihood estimates for the parameters are given by θ̂1, then

the neuron’s actually resulting distribution of activation can be determined:

f̂2(λ|θ̂1,θ2) = f1(g(λ; θ̂1,θ2)|θ1)

�����
dg(λ; θ̂1,θ2)

dλ

����� (3.2.15)

= f1(g(λ; θ̂1,θ2)|θ1)
dF−1

1 (F2(λ|θ2)|θ̂1)

dλ
(3.2.16)

=
f1(g(λ; θ̂1,θ2)|θ1)

f1

�
F−1

1 (F2(λ|θ2)|θ̂1)|θ̂1

� dF2(λ|θ2)
dλ

(3.2.17)

=
f1(g(λ; θ̂1,θ2)|θ1)

f1(g(λ; θ̂1,θ2)|θ̂1)
f2(λ|θ2) (3.2.18)

The expression in equation 3.2.18 relates the actual output distribution f̂2(λ|θ̂1,θ2)
to the desired output distribution f2(λ|θ2). It can be used to calculate the relative

entropy (also referred to as Kullback-Leibler Divergence or Distance) D( f̂2|| f2), “a

measure of the distance between two distributions”10 or rather of the “inefficiency

of assuming that the distribution is [ f2] when the true distribution is [ f̂2]”:11

D( f̂2|| f2) =

∫ ∞

0

f̂2(λ|θ̂1,θ2) log
f̂2(λ|θ̂1,θ2)

f2(λ|θ2)
dλ (3.2.19)

=

∫ ∞

0

f̂2(λ|θ̂1,θ2) log
f1(g(λ; θ̂1,θ2)|θ1)

f1(g(λ; θ̂1,θ2)|θ̂1)
dλ (3.2.20)

=

∫ ∞

0

f̂2(λ|θ̂1,θ2)
�
〈φ1(g(λ; θ̂1,θ2)),θ1− θ̂1〉 − g1(θ1) + g1(θ̂1)

�
dλ

(3.2.21)

10 Cover and Thomas (2005). The KLD is however not a metric, as they are careful to point out:

“relative entropy is always nonnegative and is zero if and only if [ f̂2 = f2]. However, it is not a true

distance between distributions since it is not symmetric and does not satisfy the triangle inequality.

Nonetheless, it is often useful to think of relative entropy as a ’distance’ between distributions.”
11 Ibid.

33



CHAPTER 3. EXPONENTIAL FAMILY NEURON MODELS

Substituting v = g(λ; θ̂1,θ2);
dv
dλ
= f2(λ|θ2)

f1(v|θ̂1)
back into equation 3.2.21 yields:

D( f̂2|| f2) =

∫ ∞

−∞
f1(v|θ1)〈φ1(v),θ1− θ̂1〉dv− g1(θ1) + g1(θ̂1) (3.2.22)

= 〈E[φ1(v)],θ1− θ̂1〉 − g1(θ1) + g1(θ̂1) (3.2.23)

= |〈∇g1(θ̂1),θ1− θ̂1〉 − (g1(θ1)− g1(θ̂1))| (3.2.24)

≤ ||∇g1(θ̂1)|| · ||θ1− θ̂1||+ K ||θ1− θ̂1|| (3.2.25)

≤ 2K ||θ1− θ̂1|| (3.2.26)

This follows from the fact that g is Lipschitz continuous on a compact set including

θ̂1 and θ1.12 Thus also D( f̂2|| f2) is Lipschitz continuous, which implies that it

converges at least as fast to 0 as the difference ||θ̂1− θ1||. In other terms, a good

approximation of the parameters θ1 of the input distribution results in a low

KL divergence, and a parameter estimation technique that converges in O (n−1)
implies that the KLD also converges with O (n−1).

This shows that as long as the parameter estimates are close to the real pa-

rameters of the membrane potential distribution, the distribution of the neuron’s

activation is also close to the desired distribution.

3.3 Normal-Log-Normal Neuron Model

In this section, a plastic neuron model is finally derived for a specific membrane

potential and an activation distribution. It serves as a simple example of the

methods outline above, rather than a suggestion of a neuron model, but it exhibits

a number of interesting properties worth investigating.

3.3.1 Normally Distributed Inputs

If the membrane potential V (t) of a neuron is modeled using an Ornstein-Uhlenbeck

process13 (a noisy relaxation process) resulting from the “relaxing” effect of a leaky

12 Roberts and Varberg 1974. 13 Shimokawa and Shinomoto (2009) provide as parameters for

such an OU process to reproduce biological findings the means µλ = 50Hz and µκ = 1.0, standard

deviations σλ = 25Hz and σκ = 1.0 and the joint timescale τ= 600ms.
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membrane and the “noisy” bombardment with ePSPs, its distribution at a fixed

point t in time is Gaussian with mean µ(t) and variance σ2(t).14

This choice of membrane potential distribution appears sensible from both

a statistical as well as an implementation perspective: Under the simplifying

assumption that the membrane potential resembles a linear combination of a

large number of independent, identically distributed post-synaptic potentials, the

central limit theorem states that the membrane potential should roughly resemble

a normal distribution. As the maximum entropy distribution given a fixed mean

and variance and real support, the normal distribution also makes the weakest

assumptions about the distribution of membrane potentials given its first two

moments, mean and variance.15

For a mean µ1 and a standard deviation σ1, the PDF f1 and CDF F1 of the

neuron’s membrane potential are given as follows:16

f1(v|µ1,σ1) =
1p

2πσ1

exp

 
−
�

v−µ1p
2σ1

�2!
(3.3.1)

F1(v|µ1,σ1) =
1p

2πσ1

∫ v

−∞
exp

 
−
�

x −µ1p
2σ1

�2!
dx (3.3.2)

=
1

2
+

1

2
erf

�
v−µ1p

2σ1

�
(3.3.3)

where erf(v) :=
2p
π

∫ v

0

exp(−x2)dx (3.3.4)

When re-parameterizing with the new parameters θ1 ∈ R+ and θ2 ∈ R− \ {0},
the PDF takes its canonical exponential family form:

14 Rudolph and Destexhe 2005. 15 Cover and Thomas 2005. 16 Hogg, McKean, and Craig

2005.
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set

 
µ1

σ2
1

!
→

−

θ1

2θ2

− 1
2θ2


 (3.3.5)

f1(v|θ1,θ2) =

r
−θ2

π
exp
�
(v+

θ1

2θ2
)2θ2

�
(3.3.6)

= exp

�
v2θ2+ vθ1+

θ 2
1

4θ2
+

1

2
log(−2θ2)−

1

2
log(2π)

�
(3.3.7)

= exp
�〈φ(v),θ 〉 − g(θ) + h(v)

�
(3.3.8)

with θ :=

 
θ1

θ2

!
, φ(v) :=

 
v

v2

!
, g(θ ) :=− θ2

1

4θ2
−1

2
log(−2θ2) and h(v) :=−1

2
log(2π).

The gradient of the log-partition function g as well as its component-wise

inverse, which is needed for maximum likelihood estimation, can be calculated

easily:

∇g(θ) =




dg(θ)
dθ1

dg(θ)
dθ2


=




− θ1

2θ2�
θ1

2θ2

�2
− 1

2θ2


 (3.3.9)

γ(Θ) := (∇g)−1(

 
Θ1

Θ2

!
) =




Θ1

Θ2−Θ2
1

−1
2(Θ2−Θ2

1)


 (3.3.10)

The continuous time running ML estimate of the parameters of the membrane

potential distribution from equations 3.2.10 and 3.2.11 can thus be written as a

system of two differential equations:

1

α

dµ̃1(t)
dt

=−µ̃1(t) +φ1(v(t)) =−µ̃1(t) + v(t) (3.3.11)

1

α

dµ̃2(t)
dt

=−µ̃2(t) +φ2(v(t)) =−µ̃2(t) + v(t)2 (3.3.12)

θ̂1(t) = γ1(µ̃(t)) =
µ̃1(t)

µ̃2(t)− µ̃1(t)2
(3.3.13)

θ̂2(t) = γ2(µ̃(t)) =
−1

2(µ̃2(t)− µ̃1(t)2)
(3.3.14)
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Reversing the parameter transformation results in estimators µ̂ and σ̂ for the

parameters of the distribution17:

µ̂(t) =− θ̂1

2θ̂2

= µ̃1(t) (3.3.15)

σ̂2(t) =− 1

2θ̂2

= µ̃2− µ̃1(t)
2 (3.3.16)

This result is hardly surprising, as it resembles just the running estimate of mean

and variance, but it validates the approach chosen so far.

While the first moment corresponds to a term just like the neuron’s leaky

membrane potential, only with a slower time-constant, and could thus easily be

implemented in a biological system, an estimate of the second moment requires

a dependency on the square of the membrane potential and thus some other

underlying mechanism. Triesch (2007) suggests that “[the] required estimate of

the second moment of the neuron’s firing rate may be implemented by an agent

A that binds two Ca2+ ions: A+ 2Ca2+→ A′. The concentration of A′ could then

approximate the square of the current firing rate”.

3.3.2 Log-Normally Distributed Firing Rates

Based on a review of a large number of biological studies, Buzsáki and Mizuseki

(2014) suggest that log-normal distributions of firing rates can be found on dif-

ferent scales throughout the brain. They attribute this to the fact that “biological

mechanisms possess emergent and collective properties as a result of many in-

teractive processes, and multiplication of a large number of variables, each of

which is positive, gives rise to lognormal distributions”.18 This effect – an intuitive

multiplicative analog of the additive central limit theorem – can be observed in

many other sufficiently complex systems, as well.19

Following their suggestion, the neuron’s desired output distribution is here

defined to be a log-normal distribution (i.e. a distribution of a random variable λ,

17 The notation here is a bit unfortunate, because µ̃ refers to the running estimate of the expected

value of the sufficient statistics of the membrane potential distribution, whereas µ̂ refers to an

estimator of its mean. 18 Buzsáki and Mizuseki 2014. 19 Limpert, Stahel, and Abbt 2001.
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the logarithm of which is normally distributed) with parameters µ2 and σ2 and

the cumulative distribution function

F2(λ|µ2,σ2) =
1

2
+

1

2
erf

�
log(λ)−µ2p

2σ2

�
(3.3.17)

Solving for y gives the quantile function G2 of the log-normal distribution20:

G−1
2 (x) = exp

�
µ2+σ2

p
2erf−1(2x − 1)

�
(3.3.18)

The same model is briefly discussed and analyzed by Roxin et al. (2011) to

model the population firing rate of neurons with exponential activation functions

and subsequently compared to different models. Their conclusion is, however,

that besides strong evidence to the contrary at least “for homogeneous neuronal

populations, a lognormal distribution of firing rates is, in general, not to be

expected”. Thus finding the right distribution of activation to use remains an

interesting question; here the log-normal distribution is used to provide a proof of

concept because of the previously cited evidence and mathematical convenience,

but the results could easily transfer to other similar distribution.

3.3.3 Adaptive Normal-Log-Normal Neuron Model

Using Theorem 5, the random variable λ := f (V ; m1, s1,µ2,σ2) has the desired

log-normal distribution with cumulative distribution function F2 if and only if

f (v; m1, s1,µ2,σ2) = G2(F1(v; m1, s1);µ2,σ2), where m1 = µ1, s1 = σ1, µ2 and σ2

are the parameters of F1 and F2, respectively. It exhibits intrinsic plasticity in the

sense of section 2.3, if the parameters m1 and s1 are set to the running estimates

µ̂1 and σ̂1 as defined in equations 3.3.15 and 3.3.16.

The dynamic membrane potential and running parameter estimates are as

20 Because F2 is continuous and strictly increasing, it is invertible with a (generalized) inverse G2
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defined above and repeated here for convenience:

τM

d

dt
V (t) =−V (t) + I(t)

1

α

dµ̃1(t)
dt

=−µ̃1(t) + V (t)

1

α

dµ̃2(t)
dt

=−µ̃2(t) + V (t)2

The activation function and its inverse can be derived as follows:

f (V ; m1, s1,µ2,σ2) = exp
�
σ2

s1
(V (t)−m1) +µ2

�
(3.3.19)

f −1(λ; m1, s1,µ2,σ2) = (log(λ)−µ2)
s1

σ2
+m1 (3.3.20)

This also determines the neuron’s activation λ(t) given V (t):

λ(t) = f (V (t); µ̃1,
p
µ̃2− µ̃1(t)2,µ2,σ2) (3.3.21)

= exp


 σ2p

µ̃2(t)− µ̃1(t)2
(V (t)− µ̃1) +µ2


 (3.3.22)

Equivalently, this defines the random threshold of a dynamical systems model

representing the same distribution of activation:

θ = f −1(
− log(U)
4t

; µ̃1,
p
µ̃2− µ̃1(t)2,µ2,σ2) (3.3.23)

= (log(
− log(U)
4t

)−µ2)

p
µ̃2− µ̃1(t)2

σ2
+ µ̃1 (3.3.24)

This can be used to implement a homeostatic integrate-and-fire neuron model with

random thresholds, the distribution of which is modulated via intrinsic plasticity,

that achieves a fixed firing rate distribution.

In principle, once the neuron’s activation distribution and the distribution of

the number and weight of synaptic connections is known, a neuron’s membrane

potential distribution could be inferred, instead of being presupposed as in the

previous sections. Unfortunately, there is no closed form expression for the dis-
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tribution of a linear combination of i.i.d. log-normal random variables. However,

two different approximations are possible: As argued before, if the number of

synaptic connections approaches infinity, the membrane potential distribution, a

linear combination of i.i.d. random variables, must converge to a normal distribu-

tion due to the central limit theorem (assuming the vector of synaptic weights is

bounded). For a smaller number of synapses, the probability distribution resulting

from a linear combination of i.i.d. activities can be approximated using e.g. an

Edgeworth series, because the first 4 cumulants of the log-normal distribution

are finite.21 Here, we assume the numbers of synaptic connections and external

noise to be sufficiently large to make the membrane potential normally distributed,

without this being inconsistent with the assumption of log-normal distributions of

activation.

3.3.4 Incorporating Refractoriness and Spike-Responses

As motivated in section 2.4.2, the spiking probability of the neuron can be modu-

lated by auto-history effects as expressed in the equation λ̃(t) = f (V (t)+
∑

i R(t−
τi)), where R is a function of the time since a previous spike i. Using an expo-

nential activation function, this can be motivated more rigorously: Suppose that

each spike the neuron fires triggers a cascade of biological processes that could

each interrupt the generation of subsequent spikes. If, after a spike at time τi,

the triggered processes have the time-varying probability R̃(t − τi) of prevent-

ing the firing of a spike at time t and the effects of different spikes accumulate

and are assumed to be independent of each other and the neuron’s current ac-

tivation, then λ̃(t), the instantaneous spiking probability with refractoriness, is

given by the joint probability λ(t)
∏

i R̃(t −τi), where λ(t) denotes the activation

in the absence of refractory effects. This can be simplified due to the fact that

λ(t) = f (V (t)) = exp(c1V (t)+ c2) for some constants c1 and c2, because using the

logarithm, the product can be absorbed into the exponential as a sum, resulting

in λ̃(t) = exp(c1V (t) + c2 + log(
∏

i R̃(t − τi))) = f (V (t) + 1
c1

∑
i log R̃(t − τi)).

We now call R := 1
c1

log R̃ the refractory function and get a model similar to the

spike-response model.22

21 McCullagh and Nelder 1989. 22 Gerstner 1995.
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Using the neuron’s own spiking output X (t) =
∑

i δ(t −τi), the sum
∑

i R(t −
τi)) can be rewritten as the convolution Vref(t) :=

∫ t

0
R(t −τ)X (τ)dτ, which has

the same form as the post-synaptic potential induced by a single synapse, only

using the refractory function R instead of a synaptic filter η. This allows us to treat

auto-history effects such as refractoriness or more general spike responses as an

additional internal input to the virtual membrane potential of the neuron. One side

effect of this is, that the changes of the spike distribution resulting from inclusion

of auto-history effects are compensated for by the homeostatic adaptation process

within the neuron and should thus be alleviated.

When using an integrate-and-fire type neuron model with random thresh-

olds, the negative auto-history can equivalently be subtracted from the random

threshold, rather than used as an additive component of the virtual membrane

potential Ṽ 23. This is sometimes used to account for refractoriness and spike rate

adaptation.24 The refractoriness of the neuron is then modeled by a time-varying

component of the threshold that can, for sufficiently simple refractory functions,

be expressed as a one or two-dimensional system of differential equations.

3.3.5 Relations to Generalized Linear Models

Using exponential family distributions to model the neuron’s activation puts this

thesis into the context of the widely used generalized linear models,25 so a few

interesting connections are listed here.

The activation function in equation 3.3.22 can be viewed in a quite different

way, as well. If we interpret the neuron as a system that receives a linear com-

bination of pre-synaptic inputs and transforms it in a non-linear way, resulting

in a spiking probability from which spikes are randomly drawn, then the neuron

corresponds to a generalized linear model: If f (V ) = exp(η(t)) = λ(t) = E[X (t)]
is the expected value of the instantaneous random spiking output X (t) at time

t and η(t) = σ2

s1
V (t) + (µ2 − σ2m1

s1
) =

∑
j X jβ j is a linear function of the neu-

23 Note however, that doing so means that refractoriness is added at the last stage of the model

and thus cannot be compensated for by intrinsic plasticity. This in turn means, that the neuron’s

distribution of spikes can be systematically different from the distribution resulting from the desired

distribution of activation in the absence of refractory effects! 24 Dayan and Abbott 2001, ch. 5.
25 McCullagh and Nelder 1989.
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ron’s synaptic inputs X j, then η(t) = log(E[X (t)]) and the neuron resembles

a generalized linear model with log-link function.26 If we further assume that

X (t) at any point t is the expected number of spikes within a short time inter-

val around t and follows a Bernoulli, binomial or Poisson distribution, then this

becomes a GLM with conjugate log-link function. Finding the most likely pa-

rameters β for which the random observations are distributed around the mean

E[X (t)] = exp(η(t)) = exp(
∑

j X jβ j) then reduces to the problem of approxi-

mately solving the linear system
∑

j X jβ j = log(E[X ]) with respect to an appro-

priately chosen error measure.27 Such log-link models are commonly used for

Poisson regression analysis, where multiplicative effects of several processes are to

be modeled,28 and can be applied to a wide range of systems.29

If the model is expressed in discrete time30, as in equations 2.1.6 to 2.1.9,

the spiking variable X becomes a Bernoulli random variable, and the probability

ρ = E[X ] to spike within one time-interval is related to the activation λ via

λ =− log(1−ρ). Concatenated with the log-link function, this results in the model

η(t) = log(λ(t)) = log(− log(1−ρ)) = log(− log(E[X ])), i.e. a GLM with the so

called complementary log-log function link that is often used, as here, to model

binary data.31 Curiously, this relates the model presented here in discrete time as

well as in continuous time to another commonly used neural activation function,

the logistic function, by the fact that “[for] small values of π, the complementary

log-log function is close to the logistic, both being close to log(π)”.32

Within the GLM framework, the task of modeling a spiking point-process can

be related to tools such as so called survival analysis, which is commonly used to

analyze point processes like a patient’s or machine’s probability of “survival” over

a period of time (hence the name), with the neuron’s activation λ(t) over time

representing the so called hazard function.33

26 McCullagh and Nelder 1989, ch. 2. 27 Charnes, Frome, and Yu 1976. 28 McCullagh and

Nelder 1989, ch. 6. 29 Limpert, Stahel, and Abbt 2001. 30 Assume without loss of generality

that the timescale is chosen such that 4t = 1. 31 McCullagh and Nelder 1989, ch. 4. 32 Ibid.,

ch. 4. 33 Ibid., ch. 13.
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SECTION 3. Normal-Log-Normal Neuron Model

3.3.6 Implications for Neural Computations

Exponential activation functions have equivalent approximating power to e.g.

the commonly used standard sigmoid and radial basis functions34 and are thus

reasonable candidates from a computational point of view. Furthermore, they fall

into the category of activation functions for which the joint likelihood is convex35

and maximum likelihood estimation (and thus the intrinsic plasticity mechanism

discussed here) converges to the distribution’s true parameters.

Determining the activation function of a neuron from its membrane potential

and activation distribution can be very helpful in analyzing the “calculus” used by

neurons for computation. The assumption of fixed threshold units, for example,

on which the idea of a logical calculus of neural computation36 is based, has

testable implications for the shape of the resulting distribution of firing rates in

a network. Conversely, measuring the distributions in a network and inferring

the effective activation function (without having to disrupt in vivo processing,

clamp membrane potentials or otherwise distort the neuron’s environment) allows

building a calculus based on the inferred activation function. Similarly to how

a logical calculus of neuronal activity can be built atop the assumption of fixed

threshold neurons, a multiplicative “calculus” can be derived from the assumption

of exponential activation functions:

Given that sensory neurons encode their sensory modality logarithmically,

rather than linearly37, the activation of a neuron receiving multiple sensory inputs

γi = log(βi) is given by λ = exp(
∑

i γiωi) =
∏

i exp(log(βi)ωi) =
∏

i β
ωi
i , which

corresponds to a multiplication of the measured sensory modalities βi. This method

of calculating products is referred to as the log-exp transform by Koch and Poggio

(1992) and could provide a simple mechanism for coincidence detection.

The hypothesis that neurons can multiply inputs is supported by a host of bio-

logical evidence38 and could be attributed to very different potential mechanisms.39

Using passive observations of an in vivo system however, as might be possible

34 DasGupta and Schnitger 1993. 35 Paninski 2004. 36 McCulloch and Pitts 1943. 37 This is

the well known Weber-Fechner law, that states in German: “Die Grösse der Empfindung (γ) steht

im Verhältnisse nicht zu der absoluten Grösse des Reizes (β), sondern zu dem Logarithmus der

Grösse des Reizes” (Fechner 1860, p. 13). 38 Koch and Poggio 1992; Koch and Segev 2000;

Koch 1997; Gabbiani et al. 2002. 39 Koch and Poggio 1992.
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CHAPTER 3. EXPONENTIAL FAMILY NEURON MODELS

using the methods discussed here, to capture the effective activation function in

vivo might help answer these questions.

3.3.7 Implications for Synaptic Plasticity

So far, Gaussian membrane potential distributions were discussed. This section

addresses the question, what happens when the membrane potential of the same

neuron model with exponential activation function takes on a different distribution

and is subject to simple Hebbian synaptic plasticity and synaptic scaling.

The approach and conclusions here are similar to those of Triesch (2007), who

used an information theoretical approach to tune parameters of a fixed activation

function to enforce an exponential distribution of outputs. Thus naturally, the

conclusions would be very similar if an exponential, instead of a log-normal, acti-

vation distribution was chosen here. But despite the different resulting distribution

of activation, some general conclusions about the interaction of the homeostatic

mechanisms of intrinsic plasticity and synaptic plasticity can be equivalently de-

rived from both approaches.

Dropping the homeostatic plasticity equations, the activation function of the

neuron given by equation 3.3.22 and the linear combination of synaptic inputs can

be summarized in the following equations for discrete time:

Vt = 〈x t ,ω〉 (3.3.25)

λt = exp
�
c1 · Vt + c2

�
(3.3.26)

where x t is the vector of (filtered) pre-synaptic activities40, ω is the vector of

synaptic weights through which the inputs are projected, Vt is the neuron’s mem-

brane potential, c1 and c2 are constants and λt is the neuron’s activation, each at

discrete time-step t.

As shown in the following, from this very simple model and a few basic as-

sumptions, a Hebbian learning rule allowing single neurons to extract independent

components from mixed signals can be derived as the solution to the interesting

40 Due to linearity of the convolution operator, filtering the pre-synaptic inputs before calculating

the linear combination is the same as filtering the linear combination as written in equation 3.3.22
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SECTION 3. Normal-Log-Normal Neuron Model

optimization problem of blind source separation.41

In the following, the vector ω is assumed to have fixed length ||ω||2 = 1, a

constraint that can be attributed to fast acting mechanisms of synaptic scaling.42

Independent component analysis (ICA) can be loosely defined as the process of

de-mixing non-Gaussian signals by finding a basis of the input space for which

the Fourier-coefficients of the input vectors are “maximally non-Gaussian”. It is

built on the observation that “a sum of two independent random variables usually

has a distribution that is closer to gaussian than any of the two original ran-

dom variables”,43 and thus “[m]aximizing the nongaussianity”44 of the recovered

components should result in the original unmixed, independent components.

A major benefit of this approach when compared to principal component analysis

(PCA) is the fact that e.g. even a mixture of uncorrelated signals with identity

covariance matrix can be de-mixed using ICA as shown in the following, whereas

PCA can not. This qualitative difference comes from the fact that PCA, operating

on the covariance matrix alone, can utilize at most the second centralized moment,

the covariance, of the mixtures, whereas ICA, a non-linear method, depends on

higher order moments, as well. Such dependencies on higher order moments –

excess kurtosis (defined via fourth and second centralized moment) in particular –

are often used as measures of a distribution’s non-gaussianity for ICA,45 with higher

values of high order moments intuitively implying “heavier tails than Gaussian”.

The exponential activation function of our model neurons acts as such a non-

linear transformation of the neuron’s membrane potential, that introduces a mono-

tonic dependency of the neuron’s mean activation on higher order moments of

its membrane potential, i.e. its expected activation is the higher, the more “non-

gaussian” the membrane potential distribution becomes for a fixed mean and

variance (see the appendix section B.1 for a derivation that shows this dependency

on higher order moments). Thus choosing synaptic weights to maximize the neu-

ron’s expected activation under the constraint ||ω|| = 1 simultaneously maximizes

the non-gaussianity of the resulting membrane potential, which in turn implies

that an independent component is extracted from the mixture. This is analytically

shown in detail for mixtures of i.i.d. Laplace random variables in appendix section

41 Hyvärinen and Oja 2000. 42 Turrigiano and Nelson 2000. 43 Hyvärinen and Oja 2000.
44 Ibid. 45 Ibid.
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CHAPTER 3. EXPONENTIAL FAMILY NEURON MODELS

B.2, but generalizes to other distributions as well.

In order to maximize the neuron’s expected output with respect to the vector of

synaptic weights ω, a simple stochastic gradient descent mechanism can be derived.

The objective is to to find, given an empirical distribution of V :

ω̂ := argmax
w
E[exp(c1V + c2)] (3.3.27)

Taking at each time step t the gradient of the activation resulting from a single

random sample x t , rather than the gradient of the expected value, an iterative,

stochastic gradient ascent algorithm can be formulated to maximize this expres-

sion46:

ωt+1 =ωt +η∇ωt
exp(c1〈x t ,ωt〉+ c2) (3.3.28)

=ωt +ηc1 x t exp(c1〈x t ,ωt〉+ c2)︸ ︷︷ ︸
λt

(3.3.29)

=ωt +η0 x tλt (3.3.30)

Under the constraint on the norm of the weight vector ||ω|| = 1, this algorithm will

rotate ω in the input space into the direction for which the resulting membrane

potential distribution is the “least gaussian”, thus extracting an independent com-

ponent. As can be seen from equation 3.3.30, this update mechanism takes the

form of the most basic Hebbian learning rule of synaptic plasticity – the product

of simultaneous pre-synaptic activities (x t) times post-synaptic activity (λt) with

learning rate η0. This implies that simple Hebbian learning with (rate-coding)

exponential neurons and synaptic scaling is sufficient to realize ICA where linear

methods such as PCA fail. A numerical proof of concept of this conclusion is given

in chapter 4.

Contrary to e.g. Savin, Joshi, and Triesch (2010), intrinsic plasticity in this

setup does not appear necessary for ICA, but it could play the supporting role of

46 This is a technique referred to as stochastic gradient ascent – the stochasticity is due to the fact

that the gradient is not averaged but sampled – for which according to Bottou (2010) “almost

sure convergence under mild conditions” can be shown. These conditions include those used for

ordinary gradient ascent, such as sufficiently small step sizes and “well behaved” functions to

maximize.
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SECTION 3. Normal-Log-Normal Neuron Model

realizing a zero mean unit variance distribution of the data as chosen here and

often enforced during preprocessing by data whitening.47

47 Hyvärinen and Oja 2000.
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CHAPTER 4
Simulation-Based Numerical Results

All programs used in this chapter are written in the Python programming language

using the SciPy library stack.1 Numerical solutions to differential equations are

calculated using discrete time steps of length 4t = 1ms of simulated time. The

codes used to generate the shown figures are included in Appendix C.

4.1 Mappings for a Wide Range of Distributions

In this section, an exponential family neuron model is implemented and simulated,

in order to numerically test the hypothesized ability of the neuron to adaptively

map different, time-varying membrane potential distributions to fixed distributions

of activation.

Since the focus in this section is on the mapping between membrane potential

and activation, the spike generation, refractoriness and integration of synaptic

inputs in the membrane potential are not modeled here. The model used in this

section is given by the following equations, that are repeated from earlier chapters:

µt = αφ(Vt) + (1−α)µt−1

θ̂t = γ(µt)

λt = G2(F1(V ; θ̂t),ψ)

1 Oliphant 2007; Rossum 2012; Jones et al. 2007.
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CHAPTER 4. SIMULATION-BASED NUMERICAL RESULTS

Here, Vt is the random membrane potential at time t, drawn from a distribution

with CDF F1(V ;θt). The input distribution is a continuous exponential family dis-

tribution with sufficient statistics φ, log-partition function g, some base measure

and the (time-varying) natural parameters θt . The running parameter estimate θ̂t

is derived from a running estimate µt of the sufficient statistics φ via γ= (∇g)−1,

the inverse gradient of the log-partition function g. In each of the experimental

setups, the activation function is chosen corresponding to the respective distribu-

tions of membrane potential and activation, where the parameters of the output

distribution are given and the parameters of the input distribution are estimated

via the neuron’s intrinsic plasticity mechanism.

In the first setup (see figure 4.1.1), the neuron is presented with a normal

distribution of membrane potentials and a desired log-normal distribution of acti-

vation. The parameters of the membrane potential distribution change at some

points in time, and the adaptation of the neuron’s estimate of the membrane

potential distribution towards the true distribution as well as the adapation of its

true activation distribution towards the desired distribution are illustrated. The

expression for the Kullback-Leibler Distance (KLD) derived in 3.2.2 is used to quan-

tify the statement made there, that the true activation distribution “converges”2 in

KLD towards the desired distribution as the parameter estimates of the membrane

potential distribution converge to the true parameters. The results support the

hypothesis and show that the exponential example neuron model discussed at

length in section 3.3 realizes the hypothesized homeostatic mapping from a normal

to a log-normal distribution.

In a similar setup (see figure 4.1.2), multiple different exponential family

distributions are used for the membrane potential as well as the activation in order

to demonstrate that the results shown for the normal-log-normal model generalize

to other exponential family distributions, as well. Cumulative histograms of

random samples of the neuron’s activation are compared to the desired CDF using

the Kolmogorov-Smirnov Distance or test, a widely used measure for how well an

empirical distribution approximates an analytically given distribution,3 in order to

2 Since KLD is not a metric, rather than convergence in the strict sense this means that the KLD

converges to 0. 3 Shimokawa and Shinomoto 2009; Haslinger et al. 2012; Brown et al. 2002;

Hromádka, DeWeese, and Zador 2008; Truccolo et al. 2005.
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SECTION 1. Mappings for a Wide Range of Distributions

Figure 4.1.1: See page 53. The model neuron receives membrane potentials
drawn from one of three different normal distributions for a period of 10000ms of
simulated time each (color coded throughout the figure). The top row shows the
resulting membrane potential over time. Due to the neuron’s intrinsic plasticity
mechanism, the membrane potential distribution estimated by the neuron slowly
converges to the true distribution. This is shown in the second row, where for each
of the three periods the true membrane potential distribution is shown dashed in
black, and estimated distributions from different points in time during that period
are shown as solid lines (with early estimates in lighter shades). Towards the end,
the estimated and true distribution are virtually indistinguishable. The resulting
activation of the neuron is shown as a function of time in the middle row. The
true activation distribution of the neuron at each point in time can be calculated
using the true and estimated membrane potential distribution. As the parameter
estimates converge to the true parameters, the activation distribution should
converge to the desired distribution. This can be seen in row 4, where for the three
periods the desired activation distribution is plotted in dashed black (identical
across all periods) on top of the true activation distribution at different points in
time during the corresponding period. Again, the match towards the end of each
period is very good. To quantify this, the bottom row shows the Kullback-Leibler
Divergence between the true and the desired activation distribution over time. It
is apparent, that changing the input distribution results in a sudden mismatch
of these distributions, but over time the divergence slowly converges to 0, thus
supporting the analyical results from section 3.2.2.

verify the analytical predictions. Similarly to figure 4.1.1, where the KLD between

the analytically derived actual and desired activation distribution is shown to

increase and then decay to zero at the points in time where the parameters of

the membrane potential distribution change, the KSD, measuring the mismatch

between empirical and desired distribution, increases at the same points and

decays back to low values over time. The results demonstrate the flexibility and

power of the class of adaptive exponential family neuron model defined in chapter

3.
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CHAPTER 4. SIMULATION-BASED NUMERICAL RESULTS

Figure 4.1.2: See pages 54, 55 and 56. In a very similar setup to figure 4.1.1, a
model neuron receives membrane potentials drawn from an exponential family
distribution parameterized by one of three sets of parameters for time-periods of
15000ms each. The procedure is repeated for 3 different families of distributions:
Laplace, normal and gamma distributions, resulting in 3 full page figures. The
true membrane potential distributions (dashed black), as well as the estimate at
the end of each period (solid lines, color coded), are shown in the top left of each
figure. The sampled potentials are shown in the top right as a function of time.
For 5 different desired distributions of activation (dashed black, all exponential
family members), a histogram of the resulting activations in the last 5000ms of
each period are shown in the left colum, showing a good match in all cases. The
right column shows the mismatch (Kolmogorov-Smirnov Distance) between the
desired activation distribution and the histogram of the actual activations within a
sliding window of 200ms.
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SECTION 2. Dynamical Systems Model

4.2 Dynamical Systems Model

A link between the LNP model as defined in this thesis and dynamical systems

models is established in section 3.3.3. Here, the proposed neuron model is imple-

mented as a system of first order differential equations and numerically solved to

provide a proof of concept.

The model is defined according to the following system of equations, all of

which are repetitions from previous sections:

I(t)∼ Normal (4.2.1)

U(t)∼ Uniform (4.2.2)

τM

dV

dt
=−V + I(t) (4.2.3)

τA

dµ̃1

dt
=−µ̃1+ V (4.2.4)

τA

dµ̃2

dt
=−µ̃2+ V 2 (4.2.5)

θ = (log(
− log(U)
4t

)−µ2)

p
µ̃2− µ̃1(t)2

σ2
+ µ̃1 (4.2.6)

X (t) = (V (t)> θ(t)) (4.2.7)

Here, I and U are piece-wise constant random functions of time. They are step-

functions with steps of length 4t and represent the neurons synaptic input and a

source of randomness for the threshold generation. Mean and variance of I are

changed after 20 and 40 seconds of simulated time.

As before, V is the neurons membrane potential, which is modeled to decay

back to its resting value (the expected value E[I] ∈ {−65mV,−60mV,−55mV})
with time-constant τM , chosen to be very small (2ms). The adaptation variables µ̃1

and µ̃2 have the much slower time-constant τA (set here to the still very small value

of 1s). The threshold θ is given by the inverse of the activation function of the

LNP model, parameterized by the adaptation variables as well as the parameters

of the desired output distribution. Spikes are sampled whenever the membrane

potential exceeds the threshold. For the purpose of better visualization, refractory

57



CHAPTER 4. SIMULATION-BASED NUMERICAL RESULTS

effects of the model are neglected, time constants are chosen artificially small and

the desired activation distribution is chosen to enforce high firing rates. See figure

4.2.1 for a summary of the results.

It is visually apparent, that the neuron model succeeds in estimating its own

input distribution, as to be expected considering that the model is equivalent to the

model analyzed in the previous section. The homeostatic nature of the model can

be seen in the fact that systematic changes in membrane potentials are followed

by compensatory systematic changes in the neuron’s threshold, thus maintaining

the overall firing probability.

4.3 Model Fitting from Spikes

Section 2.4.3 discusses the problem that neuronal activation can typically not be

directly observed and must thus be reconstructed from spiking activity. A simple

theoretical solution to this problem is given by equation 2.4.16 that gives the

likelihood function of the parameters η given a set of observed inter-spike intervals

(ISIs) τ as

P(η|τ)∝
∫ ∞

0

P(τ|λ)P(λ|η)dλ (4.3.1)

For the example neuron model as defined in section 3.3 under the assumption of

slow changing activation λ(t)≈ λ0 for some time interval around t, the probability

distribution over ISIs given the activation is

P(τ|λ) =
∫ τ

0

λ(t)dt exp

�
−
∫ τ

0

λ(t)dt

�
≈ τλ0 exp(−τλ0) (4.3.2)

The distribution of activation is here assumed to be the log-normal distribu-

tion with PDF P(λ0|µ,σ) = 1p
2πσλ0

exp
�
−
�

log(λ0)−µp
2σ

�2�
. The resulting joint log-

likelihood for a set of independelty observed ISIs is then given by the sum of the

log-likelihoods of the individual ISIs τ, which is given by

logL (µ,σ|τ) = log

�∫ ∞

0

exp(−
�

log(λ0)−µp
2σ

�2

−τλ0)
︸ ︷︷ ︸

=:K(λ0,τ,µ,σ)

dλ0

�
+ log

�
τp
2πσ

�

(4.3.3)
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Figure 4.2.1: The model as defined by equations 4.2.1 to 4.2.7 is numerically
solved using Heun’s method. It receives a piecewise constant (for time intervals
of 4t = 1ms each) randomly drawn input from a normal distribution with mean
and variance that are changed after 20 and 40 seconds of simulated time. Blue
dots show the neuron’s membrane potential V , purple dots its threshold θ and
vertical bars the times of spikes (their vertical position is centered at the neuron’s
membrane potential at the time of the spike). The gray area shows ±1 standard
deviation around the mean (solid red line) of the neuron’s estimated Gaussian input
distribution. For comparison, dashed lines show the corresponding confidence
interval of the true input distribution.
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The derivative with respect to a parameter θ ∈ {µ,σ} is given by

d

dθ
K(λ0,τ,µ,σ) = K(λ0,τ,µ,σ)

µ− log(λ0)
σ

�
d

dθ

log(λ0)−µ
σ

�
(4.3.4)

d

dµ
K(λ0,τ,µ,σ) = K(λ0,τ,µ,σ)

−µ+ log(λ0)
σ2 (4.3.5)

d

dσ
K(λ0,τ,µ,σ) = K(λ0,τ,µ,σ)

(−µ+ log(λ0))2

σ3 (4.3.6)

dL (µ,σ|τ)
dθ

=

∫∞
0

d
dθ

K(λ0,τ,µ,σ)dλ0∫∞
0

K(λ0,τ,µ,σ)dλ0

− d

dθ
log(σ) (4.3.7)

dL (µ,σ|τ)
dµ

=

∫∞
0

K(λ0,τ,µ,σ)−µ+log(λ0)
σ2 dλ0∫∞

0
K(λ0,τ,µ,σ)dλ0

(4.3.8)

dL (µ,σ|τ)
dσ

=

∫∞
0

K(λ0,τ,µ,σ) (−µ+log(λ0))2

σ3 dλ0∫∞
0

K(λ0,τ,µ,σ)dλ0

− 1

σ
(4.3.9)

The joint log-likelihood and its gradient can be numerically evaluated for a

given dataset of spikes and parameters µ and σ. This makes it possible to use an

iterative algorithm to numerically find the parameters for which the likelihood is

largest.

For 4 different arbitrarily chosen sets of parameters, a total of 1000 ISIs

is sampled from the theoretical ISI distributions resulting from homogeneous

Poisson processes with rates λ randomly drawn from the corresponding log-

normal distribution4. The joint log-likelihood given the set of ISIs is plotted

as a contour plot for illustration purposes, evaluated on a two-dimensional grid

of 25× 25= 625 parameter combinations of µ and σ, covering the search space

(µ,σ) ∈ [−2,2]× [0.01,2.0]5. An optimal parameter vector is found using the

Newton conjugate gradient ascent algorithm, for which the expressions given above

are numerically evaluated.

Much more sophisticated methods could be used,6 but this basic method pro-

vides an intuitive proof of the concept, that it is possible in principle to infer the

4 In between each two spikes, the firing rate is assumed to be constant, which is a strong

simplification 5 Points are logarithmically spaced in the σ-direction, due to its divisive role, and

linearly in the µ direction. 6 Cunningham et al. 2008.
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distribution of activation from spiking activity alone, without the need to know or

control the neuron’s membrane potential or make assumptions about the timescale

of changes in the activation. Figure 4.3.1 shows the log-likelihood surface on

the search space in a color coded contour plot (red indicating high, blue indicat-

ing low likelihood), as well as the parameters used to generate the ISIs and the

reconstructed estimates. Figure 4.3.2 shows the corresponding ISI distributions

resulting from the different parameterizations of the distribution of activation. It

seems apparent, that different parameter choices of the distribution of activation

are reflected in the empirical distribution of ISIs and that it might thus be possible

to recover them.

4.4 Symbiosis with Synaptic Plasticity

Section 3.3 concludes that for a neuron with exponential activation function,

corresponding to the assumption of normally distributed membrane potentials and

log-normally distributed activations with the same parameters µ and σ, Hebbian

synaptic plasticity acting on a normalized weight vector maximizes the neuron’s

expected output and thus implements independent component analysis. These

predictions are tested in this section by numerical simulations with a neuron model

as defined in section 4.1, using an exponential activation function.

To illustrate this, a toy problem is constructed (see figure 4.4.1 for a summary):

Suppose a neuron in the visual system receives synaptic inputs from a 3×3 grid of

sensory neurons, coding for e.g. light intensity. For simplicity, the response of these

sensors is assumed to be a value in R and the potential inputs to this receptive field

are thus the elements of R9. Any such input can, by definition, be represented as a

linear combination of any basis of this space and can thus be viewed as the linear

mixture of a set of 9 arbitrary orthogonal vectors, or independent components. Since

any input can be decomposed with respect to any basis, the task of recovering

the originally used orthogonal basis is an underdetermined problem, but it can be

solved probabilistically.7

7 The basis is chosen to be orthogonal, because this implies that the fourier coefficients of an input

with respect to this basis can be calculated for each of the basis functions independently.
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Figure 4.3.1: The subplots show a contour plot of the estimated log-likelihood
function for the parameters µ and σ of a log-normal distribution of activation
estimated from a total of 1000 simulated spikes per condition. The real parameters
(marked by black dots) could be closely recovered by the Newton-CG method (red
dots show ML estimates).
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Figure 4.3.2: The subplots of this figure show histograms of the inter-spike intervals
created from the log-normal activation distributions corresponding to the subplots
in figure 4.3.1. The ISI distributions are qualitatively different, thus allowing
inference about the underlying parameters used to generate them.
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Figure 4.4.1: See page 65. A random set of orthogonal basis vectors of R9 is used
to represent different features in a 2D, 3× 3 pixel visual receptive field, shown in
the left column of the figure. The features are repeatedly linearly combined using
random weights drawn from a Laplace distribution to yield random visual inputs as
shown in the second column. These inputs are projected through different vectors
of synaptic weights (using the vector product inR9) to multiple model neurons. The
resulting scalar membrane potentials are transformed by an exponential activation
function (fourth column) into the neurons’ activations (rightmost column). Over
the course of 107 samples, the neurons’ weights, updated with simple hebbian
plasticity, converge to the vectors shown in the middle column. They resemble
the basis functions from which the inputs are generated, thus showing that the
independent components are succesfully recovered. For the purpose of illustration,
the neurons are manually decorrelated via lateral inhibition and thus forced to
discover different independent components.

If the coefficients of the linear combination of independent components are ran-

domly drawn from a non-gaussian distribution (e.g. Laplace, as here), the results

from section 3.3.7 suggest that any resulting mixtures are at least as “gaussian” as

the unmixed independent components. Maximizing non-gaussianity, as measured

by the neuron’s expected activation due to its non-linear activation function should

thus result in demixing of the signals, i.e. the recovery of independent components

by the neurons’ weight vectors. Maximization of the expected outputs is done via

the simple hebbian learning rule that modulates each neuron i’s weight vector ωi,t

given by the equation ωi,t =ωi,t +η0 x tλi,t based on the neuron’s activations λi,t

and the input vector x t at time t.

The random mixing coefficients are drawn from a centered Laplace distribution,

thus centering the multivariate random input vectors. Intrinsic plasticity is not

included in the model, but under the assumption that it operates on a time-scale

much slower than synaptic plasticity, it could be used to account for this centering

of the inputs in a more biologically plausible way.

The simulation results support the hypothesis, that a simple model neuron

with an exponential activation function and Hebbian synaptic plasticity acting on

fixed-length weight vectors can implement independent component analysis.
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CHAPTER 5
Discussion

5.1 Summary

In this thesis, a simple insight from probability theory, the probability integral

transform theorem and its inverse, was used to address two principal questions

about modeling the behavior of neurons:

1. (How) can the operation of a neuron be derived from measurements of the

statistical properties of its in- and output?

2. (How) can an intrinsic homeostatic mechanism be implemented that keeps

the output statistics in a “desirable” regime?

The first question was answered by defining a linear-non-linear neuron model

that is uniquely defined by and able to reproduce given in- and output statistics.

The method is fairly general and works for arbitrary distributions of activation and

continuous distributions of membrane potential. Some possible extensions and

alterations to the model such as Poisson spike generation, inclusion of auto-history

effects and a reformulation as a dynamical systems model with random thresholds

were presented.

An approach was briefly outline how such a model could be derived when

only statistics of the spiking output, not the continuous activation (i.e. rate), are

available.
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The theoretical results were then enlarged upon for the special case of exponen-

tial family distributions of membrane potential and activation. For this class, the

second principal question was addressed using the concept of Bayesian sequential

updates with conjugate priors. The sensitivity of the neuron’s distribution of activa-

tion to changes in the membrane potential distribution and the convergence to the

desired activation distribution were analyzed.

To illustrate these concepts, the simple adaptive neuron model resulting from a

normal membrane potential and a log-normal activation distribution was derived

explicitly and an expression for the threshold of an equivalent dynamical systems

model was presented. The resulting exponential activation function was used to

illustrate, how in such a model auto-history effects could be included as “virtual”

synaptic inputs, thus simplifying the model.

A re-interpretation of the resulting model as a generalized linear model with log-

link function was briefly discussed, which might allow some transfer of knowledge

and vocabulary from these well studied methods. The perspective of the neuron

as a GLM was then used to motivate that a neuron with exponential activation

function implements a multiplication calculus in some ways similar to the logical

calculus traditionally suggested in early perceptron studies.

Interactions of the example neuron model with hebbian synaptic plasticity

were then analyzed in a simple example problem for which the emergence of

independent component analysis could be proven.

Finally, numerical simulations were used to illustrate and experimentally verify

the most interesting aspects of the theoretically derived results.

5.2 Scientific Context

Homeostatic plasticity has been suggested as a candidate mechanism to explain a

host of biological phenomena, in particular gain modulation or self regulation of the

activity in neural circuits.1 Specifically intrinsic plasticity and its interaction with

synaptic plasticity and synaptic scaling have been studied to explain homeostatis

in biological neurons,2 but with an emphasis on underlying biological mechanisms

and the resulting complexity. Similar questions have been addressed from a
1 Turrigiano and Nelson 2000. 2 Ibid.
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more abstract perspective by Triesch (2007), for example, but with a focus on

finding good parameter values for predefined activation functions which result in

a good yet imperfect fit. 3 The approach here differs in so far, as the activation

function itself is derived from the supposed distributions of membrane potential

and activation, thus reducing the problem of finding optimal parameters for the

activation function to the problem of finding parameters for the corresponding

distributions, which can be solved by the neuron itself by estimating the sufficient

statistics of its membrane potential distribution.

Since this approach requires only passive observations of membrane potential

and activation, it can also be used by researchers to “adapt” their neuron model to

in vivo data, thus allowing the model to approximate the neuron’s natural behavior

without the need to emulated the neuron’s environment.

5.3 Outlook

The results of this thesis suggest several directions in which further research should

be conducted:

5.3.1 Adaptive Distribution of Activation

Here, only adaptation of the neuron with respect to its membrane potential was

discussed, while the output distribution was assumed to be fixed. In a framework

of homeostatic plasticity however, it is also reasonable to assume that the neuron

should maintain a stable distribution of membrane potentials by modulating its

activation such that some feedback mechanism stabilizes its input – much akin to

an operational amplifier in electronics. Research in this direction would require

some further insights into biological candidates for such feedback mechanisms.

A different proposition made by Triesch (ibid.) is to study how external modula-

tors might influence the neuron’s desired distribution of activation. Modulating the

parameters of a neuron’s activation distribution could allow the brain to selectively

3 Some of the ideas presented in this thesis are implied there, albeit not fully fleshed out, which

I only discovered late in the progress of writing my thesis. Where appropriate, I retrospectively

attributed or referenced ideas already present there.
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(in)activate neurons or fine-tune them to optimize the operation of neural circuits.

In addition to homeostasis based on the individual neuron’s activity, this could

allow homeostasis with respect to network activity or other global criteria.

5.3.2 Link to Dynamical Systems Models

The connection to dynamical systems models should be further investigated, since

the perspective of LNP neuron models can contribute tools for statistical analysis,

whereas the dynamical systems perspective offers a more natural and biologically

plausible way of expressing the resulting adaptive process. The connection be-

tween integrate-and-fire neuron models with stochastic thresholds and LNP neuron

models appears to provide a good basis for that.

5.3.3 Exploring Different Models

Of course, only a narrow section of possible neuron models was presented here.

While the focus on exponential family probability distributions was motivated

both from a theoretical perspective as well as from some biological evidence,

more complex models mapping from or to e.g. mixture models could be studied.

This could be used to derive models for neurons with an observed multi-modal

activation, e.g. neurons that express so called up- and down states or neurons that

receive inputs from a multi-stable network.

Finally, due to the generality of the model discussed here, the same tools

could be used to implement homeostatic mechanisms in domains other than

neuroscience, such as cybernetics, machine learning of finance, where models

need to be able to cope with and adapt to systematic changes in incoming data.
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APPENDIX A
Lemmas and Proofs

Lemma 9. The generalized inverse g of a cumulative distribution function f is

a non-decreasing left-continuous function with the limits limx→0 g(x) = −∞ and

limx→1 g(x) =∞.

Proof. Theses proofs can be found in Embrechts and Hofert (2013, prop. 2.3). We

only prove here that the generalized inverse is non-decreasing:

Let f and g be as defined in lemma 9. The function g is non-decreasing,

because for all y0 ≤ y1 ∈ (0, 1) and for all x ∈ R we have f (x)≥ y1⇒ f (x)≥ y0

and thus g(y0) =min{x ∈ R| f (x)≥ y0} ≤min{x ∈ R| f (x)≥ y1}= g(y1).

Lemma 10. Let g : (0,1)→ R be a non-decreasing, left-continuous function and

f : R→ (0,1), x �max{s ∈ (0, 1)|g(s)≤ x}

Then g is the generalized inverse of f . The function f ∈ Π is a CDF.

Proof. Let f and g be as defined in lemma 10 and let y ∈ (0,1) be arbitrarily

chosen.

The following two results hold because g is non-decreasing and left-continuous:

Let t = g(y): Then f (t) =max{s ∈ (0,1)|g(s)≤ t = g(y)} ≥ y .

Let t < g(y): Then f (t) =max{s ∈ (0,1)|g(s)≤ t < g(y)}< y .
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This implies that g(y) =min{t ∈ R| f (t)≥ y} which in turn proves that g is the

generalized inverse of f .

The proof the limits and right-continuity of f as well as the proof that f is

non-decreasing are analogous to the proof of the corresponding properties of the

generalized inverse in lemma 9 and are not shown here.

Lemma 11. Let f ∈ Π, then for each point y ∈ f (R), the fiber f −1({y}) is a

half-closed or closed interval [xmin, xmax) or [xmin, xmax], respectively.

Proof. The fiber is empty by definition if and only if y 6∈ f (R). It is a singleton

set {x} if and only if there exists a unique element x ∈ R with f (x) = y, which

corresponds to the trivial interval [x , x].
Now assume that the fiber f −1({y}) is neither empty nor a singleton set. The

fiber must then be a convex set, as follows from the assumption that f is non-

decreasing: Let x0 ≤ x1 ≤ x2 ∈ R be arbitrary points with x0, x2 ∈ f −1({y}). It

follows that y = f (x0)≤ f (x1)≤ f (x2) = y and thus f (x1) = y ⇒ x1 ∈ f −1({y}).
Since we consider only subsets of R, this implies that the fiber is an interval.

The fiber is closed at the infimum, as follows from the right-continuity of f :

Let (x i)i∈N be a sequence in f −1({y}) that converges to xinf := inf f −1({y}). Then

( f (x i))i∈N is just the constant sequence (y)N and thus converges to y. Since f is

right-continuous we have f (xinf) = limi→∞ f (x i) = y and thus xinf ∈ f −1({y}), the

fiber is thus closed at the infimum.

Lemma 12. Let X be a random variable with uniform distribution, let F1 ∈ Π be

a CDF and let G1 be the generalized inverse of F1. Let G2 : (0,1) → R be a non-

decreasing, left-continuous function and let Y := G2(X ) be a random variable with

CDF F1. Then G1 = G2.

Proof. Let X , F1, G1, G2 and Y be defined as in lemma 12.

Using lemma 10 we construct the function F2 : x �max{s ∈ (0, 1)|G2(s)≤ x}.
Since G2 is the generalized inverse of F2 ∈ Π, theorem 4 implies that the random

variable Y = G2(X ) must have the CDF F2. Because the random variable Y has by

definition the CDF F1, this implies that F1 = F2.

Since G1 and G2 are uniquely defined as the generalized inverse of F1 and

F2 = F1, respectively, this implies that G1 = G2.
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Proof of theorem 3. Let X1 be a continuous random variable with cumulative dis-

tribution function F1, let FU denote the CDF of U := F1(X1) and let x ∈ R be

arbitrarily chosen.

Since F1 is a non-decreasing function, X ≤ x ⇒ F1(X )≤ F1(x), thus also:

X ≤ x ∨ F1(X ) = F1(x)⇒ F1(X )≤ F1(x)

The converse also holds: Since F1 is a non-decreasing function, x ≤ X ⇒ F1(x)≤
F1(X ) and thus by contradiction F1(x) 6≤ F1(X )⇒ x 6≤ X , i.e. F1(X ) < F1(x)⇒
X < x ⇒ X ≤ x . Thus:

F1(X )≤ F1(x)⇒ X ≤ x ∨ F1(X ) = F1(x)

Combining these results and factorizing the right hand side yields:

F1(X )≤ F1(x)⇔ (X ≤ x)∨ (X > x ∧ F1(X ) = F1(x))

Since the right hand side of this expression is a disjunction of mutually exclusive

propositions, we can write for the probability :

(FU ◦ F1)(x) = P(U ≤ F1(x)) = P(F1(X )≤ F1(x))

= P((X ≤ x)∨ (X > x ∧ F1(X ) = F1(x)))

= P(X ≤ x) + P(X > x ∧ F1(X ) = F1(x))

= F1(x) + P(X ∈ (x , b) := (x ,∞)∩ F−1
1 ({x}))

= F1(x) + lim
t↑b

F1(t)− F1(x)

= F1(x) + F1(x)− F1(x) = F1(x)

Lemma 11 was used above where the fiber of x is treated as an interval. Since

x ∈ R was arbitrarily chosen and F1(R) = (0,1) due to the continuity of F1, this

implies that FU |F1(R) = FU |(0,1) = id, thus U has a uniform distribution on (0, 1).

Proof of theorem 4. Let U , X2, F2 and G2 be as defined as in theorem 4, x ∈
R arbitrary, let FX2

and FU denote the CDFs of X2 and U , respectively, and let

MU :=
�
s ∈ R : F2(s)≥ U

	
. The fact that F2 is non-decreasing implies that if
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G2(U) = min MU ≤ x , then F2(G2(U)) = F2(min MU) = U ≤ F2(x). If F2(x) ≥ U ,

then x ∈ MU and thus G2(U) =min MU ≤ x . Thus G2(U)≤ x ⇔ U ≤ F2(x). From

this, we can conclude:

FX2
(x) = P(X2 ≤ x) = P(G2(U)≤ x) = P(U ≤ F2(x)) = FU︸︷︷︸

id

(F2(x)) = F2(x)

Since x ∈ R was arbitrarily chosen, this implies that F2 is the cumulative distribu-

tion function of X2.

Proof of theorem 5. Let X1, F1, F2, G2 and τ as defined in theorem 5. The ran-

dom variable U := F1(X1) then has a uniform distribution due to theorem 3.

Consequently, the random variable X2 := G2(U) = G2(F1(X1)) = τ(X1) has the

cumulative distribution function F2 according to theorem 4. The function τ is

non-decreasing and left-continuous, because it is a composition of non-decreasing

functions, one of which (G2) is left-continuous and the other (F1) is continuous.

Proof of theorem 6. Let F1, F2, G2, τ̃ and τ be as defined in theorem 6. Suppose

now that τ̃ 6= τ and let U be a random variable with uniform distribution on

the open interval (0,1). Then, since F1 is continuous CDF and thus increasing

and invertible, the random variable X1 := F−1
1 (U) is well defined and has CDF F1.

Thus both random variables τ̃(X1) = (τ̃ ◦ F−1
1 )(U) and τ(X1) = (τ ◦ F−1

1 )(U) =
(G2 ◦ F1 ◦ F−1

1 )(U) = G2(U) have the cumulative distribution function F2. But

since F−1
2 is invertible, τ̃ 6= τ implies that also τ̃ ◦ F−1

1 6= τ ◦ F−1
1 = G2. This is

contradicted by the lemma 12, which states that because τ̃ ◦ F−1
1 is non-decreasing

left-continuous function with (τ̃ ◦ F−1
1 )(U)∼ F2 and G2 is the generalized inverse

of F2 that τ̃ ◦ F−1
1 = G2.

It thus follows by contradiction that τ̃= τ= G2 ◦ F1.
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Independent Component Analysis

B.1 Dependency on High Order Moments

The expected activation E[λ] of the exponential neuron model in response to a

random membrane potential V can be expressed in terms of the moment generating

function MV of the distribution of V :

E[λ] = E[exp(c1V + c2)] (B.1.1)

= exp(c2)E[exp(c1V )] (B.1.2)

= exp(c2)MV (c1) (B.1.3)

where c1 and c2 are constants in R.

Using the series expansion of the exponential function, the moment generating

77



APPENDIX B. INDEPENDENT COMPONENT ANALYSIS

function MX (c1) can be rewritten as

MV (c1) = E[exp(c1V )] (B.1.4)

= E
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= 1+ c1E[V ] +
c2

1

2!
E[V 2] +

c3
1

3!
E[V 3] +

c4
1

4!
E[V 4] +

∞∑
n=5

cn
1

n!
E[V n] (B.1.6)
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(B.1.7)

where mi is the i-th order raw moment of the distribution of V . Assuming for

simplicity that the distribution of V is symmetrical, one can further assume without

loss of generality that it is centered around 0 and scaled to unit variance (any such

transformation can be reversed by appropriately choosing c1 and c2). The first 3

raw moments of any admissible distribution for V are then uniquely determined:

For the first moment, the mean, m1 = 0 by definition. The second raw moment is

identical to the second centered moment, as the mean is 0, and thus determined

by the variance m2 = 1. The third (as well as any other moment of odd order)

must be zero due to the symmetry of the distribution of V . While different such

distributions are thus indistinguishable by their first three moments, they differ in

the fourth and higher order moments.

As can be seen in equations B.1.3 and B.1.7, the expected activation of the

neuron can thus be understood as measuring the non-gaussianity or tail-weight

of the membrane potential distribution, favoring non-gaussian distributions with

larger probability mass in the tails. For heavy-tailed distributions of V , equation

B.1.7 even diverges to∞.
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B.2 De-Mixing Laplace Inputs

If a random variable X i follows a Laplace distribution with zero mean and unit

variance, its moment generating function is given as:

MX i
(t) =

1

1− 1
2
t2

for |t|<p2 (B.2.1)

If X =
∑N

i=0αiX i is a mixture of N ∈ N independent random variables X i for

i ∈ N with respective weights αi, the moment generating function of X is given

as the product MX (t) =
∏N

i=1 MX i
(αi t). For a mixture X of N iid. Laplace random

variables with zero mean and unit variance and weights αi ≤ 1, this together with

equation B.1.3 implies that the expected output of the neuron in response to the

input X is given by

E[Y ] = exp(c2)MX (c1)

=
exp(c2)∏N

i=1

�
1− 1

2
α2

i c2
1

� for |c1|<
p

2 (B.2.2)

To develop a first intuition, two simple extreme cases can now be distinguished

while fixing the (Euclidean) length of the weight vector ||α||2 = ||
�
α1 . . . αN

�T
||2 =Æ∑N

i=1α
2
i = 1.

First, consider that all weights αi 6= j = 0 except α j = 1 for some 1≤ j ≤ N 1. In

that case equation B.2.2 simplifies to:

E[Y1] =
exp(c2)

1− 1
2
c2

1

(B.2.3)

For the other extreme, consider that all weights are identical, i.e. αi := 1p
N

for

1 This maximizes the sup-norm of α with ||α||sup = 1.
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all i ∈ {1, . . . , N} 2. In this case equation B.2.2 simplifies to:

E[YN] =
exp(c2)�
1− 1

2

c2
1

N

�N (B.2.4)

The expected output of the neuron in equation B.2.4 monotonically decreases

with N , starting with the right-hand side of equation B.2.3 for the special case

N = 1. The monotonicity can be shown by using the inequality of arithmetic and

geometric means to show that the denominator is monotonically increasing with N :

N+1

s�
1− c2

1

2N

�N

= N+1

s
N∏

i=1

�
1− c2

1

2N

�
· 1 (B.2.5)

≤ 1
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+ 1
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1

N + 1

�
(N + 1)
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+
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1

2N

�
(B.2.7)

= 1− c2
1

2N
+

c2
1

2N(N + 1)
(B.2.8)

= 1− (N + 1)c2
1 − c2

1

2N(N + 1)
(B.2.9)

= 1− c2
1

2(N + 1)
(B.2.10)

If we consider the limit as N →∞, the mixture becomes Gaussian (as implied

by the central limit theorem) and the denominator in equation B.2.4 converges to

an exponential function:

lim
N→∞
E[YN] =

exp(c2)

limN→∞
�

1− 1
2

c2
1

N

�N (B.2.11)

= exp(c2+
1

2
c2

1) (B.2.12)

2 This minimizes the sup-norm of α with ||α||sup =
1p
N

.
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Informally speaking, this shows that an equal mixture of an increasing number of

Laplace random variables becomes more gaussian, thus decreasing the neuron’s

output (the neuron acts as a measure of the non-gaussianity).

Now consider more generally a mixture of N Laplace random variables X i with

potentially different weights αi ∈ R:

X =
N∑

i=1

αiX i (B.2.13)

E[YN] =
exp(c2)∏N

i=1

�
1− 1

2
α2

i c2
1

� (B.2.14)

= exp

 
c2− log
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2
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i c2
1

�!!
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= exp

 
c2−

N∑
i=1

log
�

1− 1

2
α2

i c2
1

�!
(B.2.16)

In order to maximize the output of the neuron under the constraint that the

2-norm of the weights ||α||2 = 1, Lagrange multipliers can be used. The constraint

optimization problem to be solved can be expressed as

minimize E[YN] = exp

 
c2−

N∑
i=1

log
�

1− 1

2
α2

i c2
1

�!

subject to ||α||2 = 1

Two auxiliary function g(α) := ||α||2− 1 and f (α) := E[YN] can be introduced

to simplify the notation. If a solution exists at all, then there must be a λ ∈ R such

that the weight vector α is a solution of the above optimization problem if and

only if it satisfies two simultaneous conditions:

0
!
= g(α) (B.2.17)

0
!
=∇ f (α)−λ∇g(α) (B.2.18)
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Deriving f component-wise yields ∇ f :

d f (α)
dα j

=
dE[YN]

dα j
=

d

dα j
exp
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= f (α)




d
dα j

�
1− 1

2
α2

j c
2
1

�

1− 1
2
α2

j c
2
1


 (B.2.21)
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=

d
dα j
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2
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2α j

2
= α j (B.2.24)

Plugging equations B.2.22 and B.2.24 into condition B.2.18 yields N simulta-

neous conditions for j ∈ {1, . . . , N}:

0
!
= f (α)
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⇔ 0= α j

�
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⇔ α j = 0∨α2
j =

2

c2
1

− 2
f (α)
λ︸ ︷︷ ︸

const.

=: γ(α) (B.2.27)

Since for each j ∈ {1, . . . , N} the weight α j ∈ {0,−
p
γ(α),

p
γ(α)} where γ(α) is

independent of j, condition B.2.17 implies, that there must be M ≥ 1 non-zero

weights αi1 to αiM , such that the 2-norm of the vector α is constrained to 1. Since

all non-zero components of α must be equal to −
p
γ(α) or

p
γ(α), it follows
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that ||α||22 =
∑N

j=1α
2
j =

∑M
j=1α

2
i j
= Mγ(α) = 1 ⇒ αi j

= ±
p
γ(α) = ± 1p

M
for

j ∈ {1, . . . , M}. The weight vector α that yields the largest expected output of the

neuron thus has, without loss of generality, the form:

α=
�
± 1p

M
· · · ± 1p

M︸ ︷︷ ︸
M times

0 · · · 0︸ ︷︷ ︸
N−M times

�T
(B.2.28)

Since the Laplace random variables are symmetric around 0, the sign of the

weights has no impact on the resulting expected output of the neuron, which is

then given by equation B.2.4 when replacing N by M . This in turn implies, that

the neuron’s expected output becomes largest when M = 1, i.e. when all but one

weights are 0.

In other words, maximizing the neuron’s expected output by adapting the

weight vector α corresponds to finding a weight vector such that the neuron’s input

resembles a single one of the Laplace source random variables. If the pre-synaptic

inputs of the neuron are themselves already linear mixtures of such Laplace sources,

the neuron’s input is still a linear mixture of the Laplace sources and it’s output

thus becomes maximal when the weight vector is chosen such that it extracts one

of the Laplace sources from the mixed pre-synaptic inputs.
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APPENDIX C
Simulation Codes

The code used to generate the figures presented in chapter 4 is provided here in

digital form on the attached SD-card.

All programs are written in the Python programming language using the SciPy

library stack.1

4SD
Adapter

Memory Disk containing

the code in digital format.

1 Oliphant 2007; Rossum 2012; Jones et al. 2007.
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