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Abstract—Event-driven computing is a key feature of many
neuromorphic circuits, yet we lack a common general purpose
language to describe such systems, reason about their capabilities,
and design them by deliberately composing smaller parts. In this
paper, I want to ask: what is the equivalent of a logic gate for
event-driven systems? I propose one very simple candidate and
show how it can be composed into arbitrarily complex event-
driven systems using a framework I call TICKTOCKTOKENS. I
motivate its design, discuss its capabilities, and share a hardware
implementation as a very compact digital circuit.

Index Terms—event-driven computing, neuromorphic, discrete
event system, tokens, building block

I. INTRODUCTION

Event-driven computing is one of the core tenets of neu-
romorphic engineering, and widely seen as a key ingredi-
ent for achieving brain-like energy efficiency in electronic
circuits. But what do we really mean with “event-driven
computing”? Unlike ‘conventional’ computer science, which
is firmly rooted in (clocked) Boolean logic and finite state
machines (FSMs), and unlike physics, which relies heavily
on differential equations, we have not yet converged on a
similar common language to construct and model event-driven
systems. In other words: what is the NAND-gate of event-
driven computers?

In this paper, I want to show what I think could be a
simple atomic building block for constructing event-driven
systems – an event-driven gate, so to say, that can be composed
into various event-driven logic circuits. This concept, which
I named TICKTOCKTOKENS (TTT) for reasons that may
become apparent in the following, can model event-driven sys-
tems and lends itself to an efficient implementation in digital
hardware. I share Verilog code of a VLSI implementation that
I developed as part of the TinyTapeout project [1] in 130 nm
CMOS Skywater technology.

My objectives for this paper are three-fold:

1) to motivate a simple, constructive and compositional
formalism for event-driven computing based around the
TTT-concept.

2) to show how this formalism can be applied to model
various event-driven systems, including but not limited
to spiking neural networks,

3) and to demonstrate how such a component can be
realized as a highly integrated digital circuit with “neu-
romorphic qualities”.

Fig. 1: Schematic overview of a TickTockToken core. There
are two counters for good and bad incoming tokens, which are
compared against programmable thresholds to decide whether
the node should start or stop emitting its token. Once triggered,
the token stays active for a finite duration or until it is stopped
by bad token input. If the token lifetime is very long, the
countdown can be triggered by a much slower clock.



A. Motivation

This project started with a practical question: how can we
formalize dendritic computation? We had developed a simple
model of dendritic plateau potentials and how they enable
single neurons to detect complex temporal patterns [2]. Now
we wanted to formalize its behavior [3], analyze its capabilities
[4], and finally derive efficient hardware implementations, but
we struggled to find an established framework for modeling
such a system. Most biophysical neuron models use systems
of continuous (stochastic, partial) differential equations, but
in our case, the dendritic compartments only require discrete
states, and the interaction is purely event-driven, i.e. it occurs
at discrete yet irregularly spaced points in time.

The standard frameworks for modeling discrete state sys-
tems are FSMs and Petri Nets [5], but they lack an explicit
notion of time, i.e. they cannot express that one event can
(or must) happen within some specific time-interval after
another - an essential feature to understand e.g. coincidence
detection. There are variants of these frameworks, namely
Timed Automata/FSMs [6] and Time(d) Petri Nets [7], that
introduce a notion of time1. And indeed, it is possible to
analyze networks of (multi-compartment) spiking neurons in
these formalisms [3], [8]–[10].

But since they are primarily used for verification of com-
plex systems, they lack other features that are essential for
implementing event-driven computing systems, in particular
composability and parallelism. Both FSMs and Petri Nets
treat the entire system, no matter how large, as a single state
(vector), which evolves one transition at a time. This poses
a challenge if we want to build up a distributed system from
smaller sub-systems, each of which should run (and change
state) simultaneously.2

Given the limitations of these common frameworks, I be-
lieve we need a better language and better tools to describe
computation in event-driven systems. In particular, I’d like
such a framework to satisfy the following requirements:

1) It should model a system composed of nodes that
communicate exclusively by (repeatedly) triggering a
finite set of events, and otherwise operate independently
of each other.

2) In order to perform any non-trivial computation3, each
node must maintain some form of internal memory or
state. The entire system’s state is the union of all its
nodes’ states and nothing else.

3) The nodes’ internal memory should be finite or fading
[11]. Here, I’ll further assume it to be discrete-valued.

1They are continuous-time models in the sense that timing constraints can
be real-valued (or at least rational), but discrete-time in the sense that there
is a finite set of events in any finite amount of time.

2In the context of verification this is not an issue, because the model can be
given as much time as necessary to process all events in (arbitrary) order. But
for a generative model this is a problem, because without global arbitration
two parts of the system could simultaneously make local state transitions that
are mutually exclusive.

3Without memory, the node can only process perfectly synchronous events,
which occur with zero probability in any real system subject to noise and
timing variations.

4) Each node should be time-invariant, i.e. delaying all
incoming events delays the node’s state and outputs
accordingly.

5) Computation is local, i.e. a node’s behavior is fully
determined by its own inputs and internal state (which,
in turn, is determined by its previous inputs). Conversely,
this implies that each node can independently update its
internal state or trigger events regardless of other nodes’
internal states.

6) Finally, the system should be able to perform “non-
trivial” computations; for example, it should be able to
detect and generate temporal sequences of events.

B. Related work

I am certainly not the first to model event-driven systems,
so I’ve drawn inspiration from a lot of prior work. First
and foremost, the neuromorphic and theoretical neuroscience
community at large has developed many different approaches
to implement event-driven systems like SNNs and event-based
sensors [12]. Specifically under the umbrella of spike-time cod-
ing [13], various frameworks have been developed to model
how information can be represented by the (relative) timing of
spikes [14], [15], how spiking neurons such as leaky integrate-
and-fire neurons can compute with spikes [11], and even how
this could be learned through plasticity mechanisms [16]. But
most of these approaches focus on explaining the specific
computational capabilities of SNNs, whereas I’m interested in
modeling event-driven systems more abstractly, including the
inner mechanism of individual (multi-compartment) neurons.

Another school of thought, going back at least to Von Neu-
mann [17], McCulloch and Pitts [18] and Minsky [19] has been
to analyze the capabilities of (discrete) neural networks from
the perspective of formal logic [20] and, more generally, func-
tion approximation (e.g. [21]). These approaches, however,
don’t yet address the asynchronous, real-time characteristics
of event-driven systems such as spiking neural networks.

Outside the neuromorphic community, event-driven or dis-
crete event systems [22] are also studied for process modeling
and the verification of parallel and distributed systems [5].
These domains mainly make use of variants of Timed FSMs
and Time(d) Petri Nets [7], which suffer from the afore-
mentioned limitation that in order to guarantee correctness,
they model state transitions as occurring one-at-a-time (with
arbitrarily high temporal resolution). This serial execution
means that although these frameworks can be used to analyze
the behavior of spiking neural networks [3], [8]–[10], they are
less suitable for actually implementing them.

Other frameworks from theoretical computer science in-
clude communicating sequential processes [23], communicat-
ing FSMs [24] and communicating hardware processes [25],
all of which are designed to model event-driven computer
systems, but they make use of specific concepts such as
message queues and sequential programs which don’t translate
well to non-von Neumann systems.

A more suitable approach for constructing neuromorphic
systems might be race-logic and Temporal State Machines



[26], an algebraic framework that can be used to formulate
algorithms at a high-level of abstraction and translate them into
an event-timing-based VLSI implementation. Here, however,
I’d like to explore a more bottom-up approach, and instead
start with a minimal hardware building block.

The only other framework I am aware of that follows a
similar approach towards building event-driven systems is the
STICK [27] framework and its extension STEAM [28]. These
models also construct event-driven micro-circuits from simple
parts, but they use heterogeneous neuron-like building blocks
with continuous dynamics. Here, I will instead consider a
discrete system.

II. THE TICKTOCKTOKENS MODEL

A. Idea

The very simple idea underlying the TICKTOCKTOKENS
concept is that each node only has a binary state, which it can
broadcast to other nodes in an event-driven way by signaling
each rising and falling transition with a specific event tistart or
tistop, respectively. In analogy to the Time Petri Net framework,
I think of a node’s start event as lending a token to each
connected neighbor, who then stores it inside a place. This
token is later recalled by the corresponding stop event.

Each connection to a neighbor node is endowed with a
signed weight. Depending on the sign, the tokens lands in one
of two places: for negative weights, tokens are accumulated in
the bad tokens place; for positive weights, in the good tokens
place. The (integer) magnitude of the weight dictates, how
many “copies” of each token to put into the respective place -
equivalently, we could allow multiple connection between the
same nodes.

A node then turns on once it holds enough good tokens
and not too many bad tokens. Once triggered, the node emits
its start event and remains in the on state until it either
“expires” after some finite amount of time, or it is stopped by
too many bad tokens; it then emits its stop event and reverts
back to the off state. The expiration is handled by an internal
countdown timer, which provides the framework with a notion
of time.

The tokens of different nodes are indistinguishable, so to
keep track of the received tokens, each node only needs to
increment (decrement) a token counter for every incoming
start (stop) event by the magnitude of the weight. Each node
comprises two such counters, one for good tokens and one
for bad tokens. How many good or bad tokens are required
to cause the node’s state to flip is determined by a respective
good or bad token threshold - two programmable parameters
of the node.

If we want to implement this in a clocked circuit, we can
integrate the net flow of good and bad tokens for the entire
clock cycle into two integer values, ∆good and ∆bad. Fig. 1
shows a schematic of how one TickTockToken node can be
implemented.

By connecting many such nodes and setting the thresh-
olds and weights appropriately, we can implement arbitrarily
complex “event-driven logic” circuits! In the following, I

will derive this more formally and then show a few simple
examples.

B. Derivation

Each node i has a binary state variable xi ∈ {off,on},
which is initialized to an off state. We’d like the node i to
turn on whenever certain conditions are met, which we can
express as a Boolean function foni (xi, xk, xl, xm, . . . ) of some
nodes’ states. To satisfy the finite/fading memory requirement,
the on state must then revert back to the off state after some
amount of time τi. Likewise, the node should turn off (or
stay off4) whenever another condition foffi is met. In other
words, the node’s output resembles a binary pulse of finite
duration τi, a monoflop, encoded into the start and stop
events tistart and tistop.

I’ll assume here that the duration τi is constant and the
node is not re-triggerable, i.e. once triggered, it will stay on
for exactly τi or until it is disabled by bad tokens, even if
fi is satisfied at a later point during this time-interval.5 I’ll
also assume that there is an infinitesimal delay associated with
the transmission of each event, which implies, for example,
that a node that disables itself through negative feedback will
generate a token with infinitesimal duration. In a clocked
implementation, this translates to a minimal duration of one
cycle.

The state of the entire system at any given point in time
is thus determined by a single real number ti per node i, the
remaining duration of the current token if the node is currently
in state xi = on (i.e. ti > 0), or ti ≤ 0 if the node is in state
xi = off.

To implement foni , we write this Boolean function in its
conjunctive normal form:

foni =
∨

j∈Oi

∧
k∈Ai,j

wi,j,kxk︸ ︷︷ ︸
=:gi,j

, (1)

where we use the sign wi,j,k ∈ {−1, 1} to represent logic
negation (−xk ↔ ¬xk), and where Oi and Ai,j index the
or- and and-terms of foni , respectively. If we introduce an
intermediate term gi,j for each or-term, we see that our node i
should turn on, if any of the intermediate terms gi,j evaluate to
true. Let’s first treat these intermediate terms, and then return
to node i.

For each term gi,j , we can introduce a “helper node” h =
hi,j with state xh that should turn on if and only if

gi,j =
∧

k∈Ai,j

wi,j,kxk = true, (2)

i.e. if the specific set of nodes k ∈ Ai,j is in the respective
states wi,j,k. We can split these nodes further into two groups,
the negated nodes A−

i,j = {k ∈ Ai,j : wi,j,k = −1} and

4To be consistent, foffi = true must imply foni = false
5If foni is satisfied when the token is set to expire, a new one is generated

that effectively extends the duration by another τi.



the non-negated nodes A+
i,j = Ai,j \ A−

i,j , so that equation 2
becomes:

gi,j = (
∧

k∈A+
i,j

xk) ∧ (
∧

l∈A−
i,j

¬xl) = (
∧

k∈A+
i,j

xk) ∧ (¬
∨

l∈A−
i,j

xl)

(3)
In words, node h should turn on if all nodes in the set

A+
i,j are/turn on (the “good” tokens), and it should turn off,

if any node in A−
i,j is/turns on (the “bad” tokens). To satisfy

our locality requirement above, the node h needs to keep track
of the state of all these nodes internally, in addition to its own
state. Luckily, we only need to know how many nodes in A+

i,j

and likewise in A−
i,j are on, i.e. we need to track just two

variables, the “good” and the “bad token count”:

cgood
h = |{k ∈ A+

i,j : xk = on}| (4)

cbad
h = |{k ∈ A−

i,j : xk = on}| (5)

Using these two, equation 3 simplifies to just

gi,j = (cgood
h = |A+

i,j |) ∧ (cbad
h = 0), (6)

or, more generally:

gi,j = (cgood
h ≥ θgood

h ) ∧ (cbad
h < θbad

h ), (7)

where θgood
h and θbad

h are the “good” and “bad token threshold”,
two parameters of node h. As discussed above, node h keeps
track of these two token counts by counting start and stop
events from the nodes in Ai,j . By construction, node h then
turns on whenever the condition gi,j becomes satisfied, and
off whenever it ceases to be satisfied.

Now let’s return to the original node i; it should turn on
whenever any of the helper nodes h are on, i.e. equation 1
reduces to

foni =
∨

h∈Ōi

xh ≡ cgood
i > 0, (8)

where Ōi is the new “good neighborhood” of node i, contain-
ing all the newly created helper nodes h. We can follow the
same construction for deriving foffi by introducing additional
helper nodes.

Note that equation 8 is merely a special case of equation 7;
in other words, any node should just turn on once its good
token threshold has been reached or exceeded, and it should
turn / stay off, once its bad token threshold has been
exceeded. As the construction above shows, this allows us
to construct arbitrarily complex Boolean conditions on when
a node should (not) turn on or off, which is why I consider
the TTT framework a simple yet complete event-driven logic.

III. MODELING EXAMPLES

With these formalities out of the way, let’s have a look
what this framework can do. In the following, I will show a
few different examples of event-based systems and building
blocks that can be constructed from simple circuits of several
TTT nodes.
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Fig. 2: Neuron circuit constructed from TTT blocks.

A. Spiking neurons (with active dendrites)

If you are familiar with SNNs you may have noticed that
the construction above is very similar to a simple spiking
neuron, where the good incoming tokens represent excitatory
post-synaptic potentials (EPSPs), and the bad incoming tokens
represent (shunting) inhibitory post-synaptic potentials (sIP-
SPs). The main differences are that the TTT node sums good
and bad tokens separately, rather than in a single membrane
potential, and it can generate a potentially long lasting token
(or pulse), which it can also prematurely terminate. Typical
SNN neuron can only output an idealized spike event with
infinitesimally short duration, but the ability to generate longer
pulses comes in handy if we want to model neurons with long-
lasting dendritic plateau potentials according to [2].

Fig. 2 shows how such a neuron with a somatic and a den-
dritic compartment and 10 excitatory and 2 inhibitory synaptic
connections can be implemented in the TTT framework. Here,
each pulse with its own time-constant, i.e. each EPSP, IPSP,
dendritic plateau potential and somatic spike, is implemented
by one node with correspondingly chosen token duration τi.
The excitatory synpases target the good token place of the
respective compartment, whereas the inhibitory synapses target
the bad token place, each with a weight of 1. To model the
strong influence of a dendritic plateau potential on the somatic
compartment, we assign a larger positive weight (3) between
them. The good and bad token thresholds are set to 3 and 0
for the dendritic compartment, and to 6 and 0 for the somatic
compartment.

If we simulate this system of TTT nodes and stimulate it
with randomly timed spikes, represented by incoming tokens
with short duration τin = 10ms, we see that it behaves
like a coincidence detecting neuron. Fig. 3 shows the time-
course of such a simulation, where the lower two panels track
the good token count in both compartments - an analog to
membrane potentials. Here, strong coincident input to the
dendritic compartment triggers plateau potentials at around
300ms, 600ms and 800ms. Each plateau lasts for τ = 100ms
unless, as in the second case, an IPSP interrupts it.



Fig. 3: Simulated behavior of the neuron from Fig. 2
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Fig. 4: Useful building blocks constructed from TTT blocks.

During a dendritic plateau, e.g. at 350ms, additional co-
incident input to the soma can trigger the neuron to spike,
whereas synaptic input alone is insufficient, as we can see at
650ms. This neuron hence detects a sequence of a coincident
volley of spikes targeting the dendritic compartment, followed
within 100ms by another volley of coincident spikes targeting
the soma.

B. Arbitrary pattern detection & generation

Besides the special case of SNNs, the TTT framework is
generic enough to model arbitrary event-driven computations.
To demonstrate this, I will show how various useful features
and building blocks can be implemented (see Fig. 4), starting
with pattern generators and detectors.

Fig. 5: Simulated behavior of the pulse generator from Fig. 4
(a) and (c).

1) Pattern generation: To generate arbitrary temporal pat-
terns in response to some trigger event, we first need to be able
to generate individual pulses with specific delay and duration.
As shown in Fig. 4(a), this can be realized by three nodes,
start, delay and pulse. The start and delay nodes are both
triggered by the input, and have durations τdelay = δ1 and
τstart > τdelay. The pulse node has duration τ1. Once triggered,
the bad delay token will inhibit the pulse node until it expires
after δ1, at which point the good start token turns pulse on.
This results in a pulse that starts with a delay δ1 and lasts for
a duration τ1. If we want to dynamically control the duration
of a token, we can use multiple good and bad tokens of fixed
duration, and combine them depending on the system’s state
to prolong or shorten the token.

We can combine two or more of these pulse generators
into an arbitrary pattern generator, e.g. by connecting them
to another node that can be triggered by one of these pulse
generators, as show in Fig.4(c). If we set this node’s token
duration short, it will remain on (or continuously re-trigger)
during any of the pulses, effectively computing the disjunction
of the pulses. Fig. 5 shows an example of a pattern generator
that produces a sequence of two pulses with fixed delays δ1, δ2
and durations τ1, τ2.

2) Pattern detection: We can also use pattern generators to
detect specific patterns. To detect a certain temporal sequence
of multiple events, we can generate a token with specifically
chosen delay and duration for each of them, such that all of
these tokens coincide whenever the sequence is presented. A
single node with a good token threshold equal to the number
of events in the pattern will then only fire if the full pattern was
present. Additional bad tokens can be introduced to suppress
the detection of confounding patterns.

C. Memory cells

To perform useful computations, our system should be able
to preserve information indefinitely in some form of memory
cell. Due to our fading memory requirement, this must be
implemented by a circuit of multiple nodes. Here we can build
on the pulse generators introduced previously and construct



Fig. 6: Simulated behavior of the memory cell from Fig. 4 (d).
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Fig. 7: Traffic light example.

something that resembles an event-based flip-flop: two pulse
generators with long delay δ and short duration τ activate each
other through mutual positive connections. One additional
node with duration δ represents the cell’s output; it is refreshed
periodically by the two pulse generators. The memory cell
can be set by an incoming token that triggers one of the
pulse generators, and reset by another event that interrupts all
ongoing tokens. Fig. 6 shows a simulation of such a memory
cell, which is set at 100ms and reset at 900ms.

D. Building complex systems

The building blocks described above can be used to con-
struct complex systems akin to (timed) FSMs and Time Petri
Nets. To this end, we can use each node to represent a single
bit in the state vector of a complex system. The conditions
for transitioning from one global state to another can then be
broken down into local conditions for each node, which can
be implemented by introducing helper nodes as derived above.
The ability to generate arbitrary temporal patterns endows this
system with a powerful representation of time.

To give an example of a more involved system, let’s consider
a traffic light with a pedestrian crossing. The cars’ traffic light
should cycle through four phases (red, yellow, green, yellow),
each with its own duration. If (and only if!) a pedestrian has

Fig. 8: Simulated behavior of the traffic-light state-machine
from Fig. 7.

requested to cross, the pedestrians’ traffic light should turn
green for some fixed interval in the middle of the cars’ red
phase, and then revert to red. A pedestrian can request to cross
at any time by pushing a button, but this has no effect if the
pedestrian light is green already, and a pending request only
takes effect once the next red phase starts.

Fig. 7 shows how this system can be implemented using
five pulse generators, one for each phase with fixed duration,
and four additional nodes. To keep the pedestrian traffic light
red whenever it is not green, we set the corresponding good
token threshold to zero, and we use one node to combine
the two different yellow phases. The pedestrians’ requests
are arbitrated by two nodes, one of which remembers that
a request has been made, and another that decides whether to
grant the request in the current red cycle. This last node can
only be triggered at the beginning of the cars’ red phase if a
request was made previously, and it is disabled immediately
after, so that any request made during the cars’ red phase will
only take effect in the next cycle. Finally, the pedestrian green
light clears any outstanding requests. Fig. 8 shows a simulation
of the traffic light system. As we can see, the traffic light
correctly cycles through the different phases, and a request to
cross at 50 s only takes effect at 60 s during the subsequent
cars’ red phase. Repeated requests during or after the cars’ red
phase around 155 s take effect in the subsequent red phase at
210 s.

This non-trivial example hopefully demonstrates that the
TTT framework, as simple as it may be, is able to model
complex event-driven system by composing instances of a
single basic component, the TTT node with its good and bad
token counter.



Fig. 9: Synthesized layout and its placement on the TinyTape-
out chip.

IV. VLSI IMPLEMENTATION

I implemented a single core as shown in Fig. 1 in Verilog,
synthesized it using the open-source workflow for TinyTapeout
[1], and submitted it for fabrication in the 130 nm SkyWater
process as part of TinyTapeout05 [29] multi-project wafer.
Fig. 9 shows the generated layout and its placement on the
chip. Its netlist comprises 558 standard cells (excluding fill
and tap cells), and at 4480 µm2 it utilizes only 28% of the
available 100 µm× 160 µm area.

The core uses 8 bit token counters and count-down timers,
and has programmable thresholds as well as a programmable
duration. To test networks composed of multiple cores, I
will use a time-multiplexing scheme outlined in the code
repository.

V. CONCLUSION

A. Extensions

Many extensions of this model are possible and perhaps
worth considering. For example, rather than assuming in-
finitesimal delays, we could consider finite or even parameter-
ized delays δi. Currently, a delay can be implemented via a
generic pulse generator as shown in Fig. 4(a), but this requires
three nodes; including a (programmable) delay in each node
would only require one additional count-down timer. We could
also make the nodes re-triggerable, which would change the
dynamics in subtle ways. We could also increase the nodes’
complexity, e.g. the duration of each token could be stochastic
and / or dependent on internal token counts, or we could add
more internal places with their own token counters to make it
easier to implement certain conditions fi.

B. So what?

What role could the TTT framework play for future neu-
romorphic research? I personally intend to use it to study
event-driven computing in general, and dendritic computation

specifically. For these purposes, the framework is not only
a good formalism to define and analyze networks, but it
also provides a constructive toolkit to build up increasingly
complex micro- and then macro-circuits that can reliably
produce certain behavior. Like in conventional logic, I believe
it is possible to then invert this process and synthesize event-
driven systems from a high-level description of their behavior.

Due to its inherently parallel construction, this framework
(unlike Petri Nets) might also prove to be a good basis for
building efficient simulators for event driven systems. But
more interestingly, from a hardware perspective, I see the
proposed TTT node as an attempt to define a kind of logic gate
for event-driven computing, which can be easily implemented
in highly integrated digital CMOS circuits. Future work could
leverage analog computing to further reduce the power con-
sumption or required area, or, by using programmable routing
schemes that have been developed by the neuromorphic engi-
neering community, this concept could be scaled-up to a kind
of event-driven field programmable gate array (“evFPGA”),
which would greatly lower the entry barrier for designing and
analyzing event-driven computing systems.

VI. CODE AVAILABILITY

All code used here, including a simulator, code to generate
all figures, the Verilog code used for synthesizing the hard-
ware implementation and corresponding test-benches can be
found in a public repository at https://github.com/jleugeri/tnt-
ticktocktokens.
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CNRS, I3S, France, Research Report, Feb. 2017. [Online]. Available:
https://hal.science/hal-01473941

[9] E. De Maria, C. Di Giusto, and G. Ciatto, “Formal Validation of Neural
Networks as Timed Automata,” in Proceedings of the 8th International
Conference on Computational Systems-Biology and Bioinformatics.
Nha Trang City Viet Nam: ACM, Dec. 2017, pp. 15–22. [Online].
Available: https://dl.acm.org/doi/10.1145/3156346.3156350

[10] E. De Maria, C. Di Giusto, and L. Laversa, “Spiking neural networks
modelled as timed automata: with parameter learning,” Natural
Computing, vol. 19, no. 1, pp. 135–155, Mar. 2020. [Online]. Available:
http://link.springer.com/10.1007/s11047-019-09727-9

[11] W. Maass and H. Markram, “On the computational power of circuits
of spiking neurons,” Journal of Computer and System Sciences,
vol. 69, no. 4, pp. 593–616, Dec. 2004. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0022000004000406

[12] S.-C. Liu, Ed., Event-based neuromorphic systems. The Atrium,
Southern Gate, Chichester, West Sussex, United Kingdom: John Wiley
& Sons, Ltd, 2015.

[13] L. Bonilla, J. Gautrais, S. Thorpe, and T. Masquelier, “Analyzing
time-to-first-spike coding schemes: A theoretical approach,” Frontiers
in Neuroscience, vol. 16, 2022. [Online]. Available: https://www.
frontiersin.org/articles/10.3389/fnins.2022.971937

[14] S. Thorpe and J. Gautrais, “Rank Order Coding,” in Computational
Neuroscience: Trends in Research, 1998, J. M. Bower, Ed. Boston,
MA: Springer US, 1998, pp. 113–118. [Online]. Available: https:
//doi.org/10.1007/978-1-4615-4831-7 19

[15] A. A. Lazar, E. K. Simonyi, and L. T. Toth, “Time encoding of
bandlimited signals, an overview,” in Proceedings of the Conference
on Telecommunication Systems, Modeling and Analysis, Nov 2005.

[16] A. Taherkhani, A. Belatreche, Y. Li, G. Cosma, L. P. Maguire, and
T. M. McGinnity, “A review of learning in biologically plausible
spiking neural networks,” vol. 122, pp. 253–272. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0893608019303181

[17] J. V. Neumann, The Computer and the Brain. New Haven: Yale
University Press, 1958.

[18] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent
in nervous activity,” The bulletin of mathematical biophysics, vol. 5, pp.
115–133, 1943.

[19] M. Minsky and S. A. Papert, Perceptrons: an introduction to computa-
tional geometry, 2nd ed. Cambridge/Mass.: The MIT Press, 1972.

[20] E. Mizraji and J. Lin, “Logic in a Dynamic Brain,” Bulletin of
Mathematical Biology, vol. 73, no. 2, pp. 373–397, Feb. 2011. [Online].
Available: https://doi.org/10.1007/s11538-010-9561-0

[21] G. Cybenko, “Approximation by superpositions of a sigmoidal function,”
Mathematics of control, signals and systems, vol. 2, no. 4, pp. 303–314,
1989.

[22] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event
Systems. Cham: Springer International Publishing, 2021. [Online].
Available: https://link.springer.com/10.1007/978-3-030-72274-6

[23] C. A. R. Hoare, “Communicating sequential processes,”
Communications of the ACM, vol. 21, no. 8, pp. 666–677, Aug. 1978.
[Online]. Available: https://dl.acm.org/doi/10.1145/359576.359585

[24] D. Brand and P. Zafiropulo, “On Communicating Finite-State Machines,”
Journal of the ACM, vol. 30, no. 2, pp. 323–342, Apr. 1983. [Online].
Available: https://dl.acm.org/doi/10.1145/322374.322380

[25] A. J. Martin, “Compiling communicating processes into delay-
insensitive VLSI circuits,” vol. 1, no. 4, pp. 226–234. [Online].
Available: https://doi.org/10.1007/BF01660034

[26] A. Madhavan, M. W. Daniels, and M. D. Stiles, “Temporal State
Machines: Using Temporal Memory to Stitch Time-based Graph
Computations,” ACM Journal on Emerging Technologies in Computing
Systems, vol. 17, no. 3, pp. 28:1–28:27, May 2021. [Online]. Available:
https://doi.org/10.1145/3451214

[27] X. Lagorce and R. Benosman, “STICK: Spike Time Interval
Computational Kernel, A Framework for General Purpose Computation

using Neurons, Precise Timing, Delays, and Synchrony,” Jul. 2015.
[Online]. Available: https://arxiv.org/abs/1507.06222v1

[28] J. V. Monaco, M. M. Vindiola, and R. Benosman,
“STEAM: Spike Time Encoded Addressable Memory.” [On-
line]. Available: https://vmonaco.com/papers/Poster-%20STEAM-%
20Spike%20Time%20Encoded%20Addressable%20Memory.pdf

[29] Tiny tapeout. [Online]. Available: https://tinytapeout.com/

https://www.sciencedirect.com/science/article/pii/0304397594900108
https://www.sciencedirect.com/science/article/pii/0304397594900108
https://link.springer.com/10.1007/978-3-642-41115-1
https://link.springer.com/10.1007/978-3-642-41115-1
https://hal.science/hal-01473941
https://dl.acm.org/doi/10.1145/3156346.3156350
http://link.springer.com/10.1007/s11047-019-09727-9
https://linkinghub.elsevier.com/retrieve/pii/S0022000004000406
https://www.frontiersin.org/articles/10.3389/fnins.2022.971937
https://www.frontiersin.org/articles/10.3389/fnins.2022.971937
https://doi.org/10.1007/978-1-4615-4831-7_19
https://doi.org/10.1007/978-1-4615-4831-7_19
https://www.sciencedirect.com/science/article/pii/S0893608019303181
https://doi.org/10.1007/s11538-010-9561-0
https://link.springer.com/10.1007/978-3-030-72274-6
https://dl.acm.org/doi/10.1145/359576.359585
https://dl.acm.org/doi/10.1145/322374.322380
https://doi.org/10.1007/BF01660034
https://doi.org/10.1145/3451214
https://arxiv.org/abs/1507.06222v1
https://vmonaco.com/papers/Poster-%20STEAM-%20Spike%20Time%20Encoded%20Addressable%20Memory.pdf
https://vmonaco.com/papers/Poster-%20STEAM-%20Spike%20Time%20Encoded%20Addressable%20Memory.pdf
https://tinytapeout.com/

	Introduction
	Motivation
	Related work

	The TickTockTokens model
	Idea
	Derivation

	Modeling examples
	Spiking neurons (with active dendrites)
	Arbitrary pattern detection & generation
	Pattern generation
	Pattern detection

	Memory cells
	Building complex systems

	VLSI implementation
	Conclusion
	Extensions
	So what?

	Code availability
	References

